Статистический отчет при создании моделей
Материал из MachineLearning.
 
  | 
В данной работе приведен обзор статистических методов оценивания качества регрессионных моделей, используемых популярными программами машинного обучения и статистической обработки данных. Приведены примеры вычисления и анализа полученных оценок.
Постановка задачи
Имеется пространство объектов-строк  и
пространство ответов 
.
Задана выборка 
.
Обозначеним:
-  
 матрица информации или матрица плана;
 -  
 вектор параметров;
 -  
 целевой вектор.
 
Будем считать, что зависимость
,
где     некоторая неслучайная функция, 
   случайная величина, 
с нулевым математически ожиданием.
В моделях многомерной линейной регрессии предполагается, что неслучайная составляющая имеет вид:
.
Требуется численно оценить качество модели при заданном векторе параметров .
Описание решения
Предполагая, 
что матрица ковариации вектора ошибки  имеет вид 
,
где 
, 
получаем выражение для оценки параметров 
 взвешенным методом наименьших квадратов:
Основными инструментами оценки качества линейной модели является анализ:
- регрессионных остатков;
 - матрицы частных и получастных корреляций (условные корреляции);
 - корреляции и ковариации коэффициентов регрессии;
 - статистики Дарбина-Уотсона;
 - расстояния Махаланобиса между исходной зависимостью и модельной;
 - расстояния Кука (мера изменения прогноза при удалении одного объекта);
 - доверительных интервалов для предсказанных значений.
 
Вычислительный эксперимент
Исходный код и полный текст работы
Смотри также
Литература
|   |  Данная статья является непроверенным учебным заданием.
 До указанного срока статья не должна редактироваться другими участниками проекта MachineLearning.ru. По его окончании любой участник вправе исправить данную статью по своему усмотрению и удалить данное предупреждение, выводимое с помощью шаблона {{Задание}}. См. также методические указания по использованию Ресурса MachineLearning.ru в учебном процессе.  | 

