Статистический отчет при создании моделей
Материал из MachineLearning.
 (→Описание решения)  | 
				 (→Описание решения)  | 
			||
| Строка 56: | Строка 56: | ||
где <tex>\bar y = \frac{1}{l} \sum_{i=1}^l y_i;</tex>  | где <tex>\bar y = \frac{1}{l} \sum_{i=1}^l y_i;</tex>  | ||
** проверку гипотезы о равенстве нулю математического ожидания регрессионных остатков на основе [[Критерий знаков|критерия знаков]];  | ** проверку гипотезы о равенстве нулю математического ожидания регрессионных остатков на основе [[Критерий знаков|критерия знаков]];  | ||
| - | ** проверку гипотезы о равенстве дисперсий (пропорциональности с заданными коэффициентами) регрессионных остатков на основе критерия Ансари-Брэдли;  | + | ** проверку гипотезы о равенстве дисперсий (пропорциональности с заданными коэффициентами) регрессионных остатков на основе критерия [http://www.mathworks.com/help/toolbox/stats/ansaribradley.html Ансари-Брэдли];  | 
** проверку гипотезы о нормальности распределения регрессионных остатков на основе критерия хи-квадрат и критерия [http://en.wikipedia.org/wiki/Jarque%E2%80%93Bera_test Жарка-Бера];  | ** проверку гипотезы о нормальности распределения регрессионных остатков на основе критерия хи-квадрат и критерия [http://en.wikipedia.org/wiki/Jarque%E2%80%93Bera_test Жарка-Бера];  | ||
| - | * вычисление расстояния Махаланобиса и Кука;  | + | * вычисление расстояния [http://ru.wikipedia.org/wiki/%D0%A0%D0%B0%D1%81%D1%81%D1%82%D0%BE%D1%8F%D0%BD%D0%B8%D0%B5_%D0%9C%D0%B0%D1%85%D0%B0%D0%BB%D0%B0%D0%BD%D0%BE%D0%B1%D0%B8%D1%81%D0%B0 Махаланобиса] и [http://en.wikipedia.org/wiki/Cook's_distance Кука];  | 
* вычисление корреляций признаков, корреляций признаков и значений моделируемой функции и коэффициента множественной регрессии;  | * вычисление корреляций признаков, корреляций признаков и значений моделируемой функции и коэффициента множественной регрессии;  | ||
* вычисление коэффициента детерминации.  | * вычисление коэффициента детерминации.  | ||
Версия 20:07, 14 ноября 2011
 
  | 
В данной работе приведен обзор статистических методов оценивания качества регрессионных моделей, используемых популярными программами машинного обучения и статистической обработки данных. Приведены примеры вычисления и анализа полученных оценок.
Постановка задачи
Имеется пространство объектов-строк  и
пространство ответов 
.
Задана выборка 
.
Обозначеним:
-  
 матрица информации или матрица плана;
 -  
 вектор параметров;
 -  
 целевой вектор.
 
Будем считать, что зависимость имеет вид
,
где     некоторая неслучайная функция, 
   случайная величина, 
с нулевым математически ожиданием.
В моделях многомерной линейной регрессии предполагается, что неслучайная составляющая имеет вид:
.
Требуется численно оценить качество модели при заданном векторе параметров .
Описание решения
Предполагая, 
что матрица ковариации вектора ошибки  имеет вид 
,
где 
, 
получаем выражение для оценки параметров 
 взвешенным методом наименьших квадратов:
Основными инструментами оценки качества линейной модели является анализ:
- регрессионных остатков;
 - матрицы частных и получастных корреляций (условные корреляции);
 - корреляции и ковариации коэффициентов регрессии;
 - статистики Дарбина-Уотсона;
 - расстояния Махаланобиса между исходной и модельной зависимостями;
 - расстояния Кука (мера изменения прогноза при удалении одного объекта);
 - доверительных интервалов для предсказанных значений.
 
В работе рассматривается
-  анализ регрессионных остатков, включающий в себя:
- вычисление среднеквадратичной ошибки:
 
 
- вычисление коэффициента детерминации:
 
где 
- проверку гипотезы о равенстве нулю математического ожидания регрессионных остатков на основе критерия знаков;
 - проверку гипотезы о равенстве дисперсий (пропорциональности с заданными коэффициентами) регрессионных остатков на основе критерия Ансари-Брэдли;
 - проверку гипотезы о нормальности распределения регрессионных остатков на основе критерия хи-квадрат и критерия Жарка-Бера;
 
- вычисление расстояния Махаланобиса и Кука;
 - вычисление корреляций признаков, корреляций признаков и значений моделируемой функции и коэффициента множественной регрессии;
 - вычисление коэффициента детерминации.
 
Вычислительный эксперимент
Исходный код и полный текст работы
Смотри также
Литература
|   |  Данная статья является непроверенным учебным заданием.
 До указанного срока статья не должна редактироваться другими участниками проекта MachineLearning.ru. По его окончании любой участник вправе исправить данную статью по своему усмотрению и удалить данное предупреждение, выводимое с помощью шаблона {{Задание}}. См. также методические указания по использованию Ресурса MachineLearning.ru в учебном процессе.  | 

