Вероятностные тематические модели (курс лекций, К.В.Воронцов)

Материал из MachineLearning.

(Различия между версиями)
Перейти к: навигация, поиск
(Робастные тематические модели: оформление)
Текущая версия (17:36, 14 сентября 2025) (править) (отменить)
(Оценивание качества тематических моделей)
 
(316 промежуточных версий не показаны.)
Строка 1: Строка 1:
{{TOCright}}
{{TOCright}}
-
Спецкурс читается студентам 2—5 курсов на кафедре «[[Математические методы прогнозирования (кафедра ВМиК МГУ)|Математические методы прогнозирования]]» [[ВМиК]] [[МГУ]] с 2013 года.
+
Спецкурс читается студентам 2—5 курсов на кафедре «[[Математические методы прогнозирования (кафедра ВМиК МГУ)|Математические методы прогнозирования]]» [[ВМиК]] [[МГУ]] с 2013 года и студентам 6 курса на кафедре «[[Интеллектуальные системы (кафедра МФТИ)|Интеллектуальные системы]]» [[ФУПМ]] [[МФТИ]] с 2019 года.
-
От студентов требуются знания курсов линейной алгебры, математического анализа, теории вероятностей. Знание математической статистики, методов оптимизации и какого-либо языка программирования желательно, но не обязательно.
+
В спецкурсе изучается вероятностное [[тематическое моделирование]] (topic modeling) коллекций текстовых документов. Тематическая модель определяет, какие темы содержатся в большой текстовой коллекции, и к каким темам относится каждый документ. Тематические модели позволяют искать тексты по смыслу, а не по ключевым словам, и создавать информационно-поисковые системы нового поколения, основанные на парадигме семантического разведочного поиска (exploratory search). Рассматриваются тематические модели для классификации, категоризации, сегментации, суммаризации текстов естественного языка, а также для рекомендательных систем, анализа банковских транзакционных данных, анализа биомедицинских сигналов. В спецкурсе развивается многокритериальный подход к построению моделей с заданными свойствами — [[аддитивная регуляризация тематических моделей]] (АРТМ). Он основан на регуляризации некорректно поставленных задач стохастического матричного разложения. Особое внимание уделяется методам лингвистической регуляризации для моделирования связности текста. Предполагается проведение студентами численных экспериментов на модельных и реальных данных с помощью библиотеки тематического моделирования [[BigARTM]].
-
Условием сдачи спецкурса является выполнение обязательных практических заданий.
+
От студентов требуются знания курсов линейной алгебры, математического анализа, теории вероятностей. Знание математической статистики, методов оптимизации, машинного обучения, языков программирования Python и С++ желательно, но не обязательно.
-
== Программа курса ==
+
Краткая ссылка на эту страницу: [http://bit.ly/2EGWcjA bit.ly/2EGWcjA].
-
=== Задачи анализа текстов. Вероятностные модели коллекций текстов ===
+
'''Основной материал:'''
 +
* ''Воронцов К. В.'' [[Media:voron17survey-artm.pdf|Вероятностное тематическое моделирование: теория регуляризации ARTM и библиотека с открытым кодом BigARTM]]. {{важно|— обновление 29.12.2024}}.
 +
* [https://www.youtube.com/playlist?list=PLk4h7dmY2eYE_JjvexGUS5MSozoxDFovp Видеозаписи, 2023 осень (МФТИ)].
-
'''Задачи классификации текстов.'''
+
= Программа курса =
-
* Коллекция текстовых документов. Векторное представление документа.
+
-
* Постановка задачи классификации текстов. Объекты, признаки, классы, обучающая выборка. Распознавание текстов заданной тематики. Анализ тональности. Частоты слов (терминов) как признаки. Линейный классификатор.
+
-
* Задача распознавание жанра текстов. Распознавание научных текстов. Примеры признаков.
+
-
* Задача категоризации текстов, сведение к последовательности задач классификации.
+
-
'''Задачи предварительной обработки текстов.'''
+
== Задача тематического моделирования ==
-
* Очистка: удаление номеров страниц, переносов, опечаток, нетекстовой информация, оглавлений, таблиц, рисунков.
+
Презентация: [[Media:Voron25ptm-intro.pdf|(PDF, 1,7 МБ)]] {{важно|— обновление 11.09.2025}}.
-
* Лемматизация и стемминг.
+
[https://youtu.be/DU0AQUNW3YI?list=PLk4h7dmY2eYEnsGW3GIMvIhxPeifcQvQt старая видеозапись]
-
* Удаление стоп-слов. Удаление редких слов.
+
-
'''Задачи информационного поиска.'''
+
'''Цели и задачи тематического моделирования.'''
-
* Задача поиска документов по запросу. Инвертированный индекс. Косинусная мера сходства.
+
* Понятие «темы», цели и задачи [[тематическое моделирование|тематического моделирования]].
-
* Критерий текстовой релевантности TF-IDF. Вероятностная модель и вывод формулы TF-IDF.
+
* Вероятностная модель порождения текста.
-
* Задача ранжирования. Примеры признаков. Формирование асессорских обучающих выборок.
+
* [[EM-алгоритм]] и его элементарная интерпретация. Формула Байеса и частотные оценки условных вероятностей.
 +
* [[Метод наибольшего правдоподобия|Принцип максимума правдоподобия]].
-
'''Униграммная модель документов и коллекции.'''
+
'''Аддитивная регуляризация тематических моделей.'''
-
* Вероятностное пространство. Гипотезы «мешка слов» и «мешка документов». Текст как простая выборка, порождаемая вероятностным распределением. Векторное представление документа как эмпирическое распределение.
+
* Понятие некорректно поставленной задачи по Адамару. Регуляризация.
-
* Понятие параметрической порождающей модели. Принцип максимума правдоподобия.
+
* Лемма о максимизации на единичных симплексах. [[Условия Каруша–Куна–Таккера]].
-
* Униграммная модель документов и коллекции. Аналитическое решение задачи о стационарной точке функции Лагранжа. Частотные оценки условных вероятностей.
+
* Теорема о необходимом условии максимума регуляризованного правдоподобия для ARTM.
 +
* Классические тематические модели [[Вероятностный латентный семантический анализ|PLSA]] и [[Латентное размещение Дирихле|LDA]] как частные случаи ARTM.
-
'''Литература:''' [Маннинг, 2011].
+
'''Практика тематического моделирования.'''
 +
* Проект с открытым кодом BigARTM.
 +
* Этапы решения практических задач.
 +
* Методы предварительной обработки текста.
 +
* Датасеты и практические задания по курсу.
-
=== Вероятностный латентный семантический анализ ===
+
== Моделирование локального контекста ==
-
* ''Напоминания.'' Коллекция текстовых документов. Векторное представление документа. Задачи информационного поиска и классификации текстов.
+
Презентация: [[Media:Voron25ptm-local.pdf|(PDF, 3,2 МБ)]] {{важно|— обновление 14.09.2025}}.
 +
[https://youtu.be/Xe36kQPlbHY?list=PLk4h7dmY2eYEnsGW3GIMvIhxPeifcQvQt старая видеозапись]
-
'''Мотивации вероятностного тематического моделирования
+
'''Онлайновый ЕМ-алгоритм.'''
-
* Идея перехода от вектора (терминов) к вектору тем.
+
* Рациональный ЕМ-алгоритм (встраивание Е-шага внутрь М-шага).
-
* Цели тематического моделирования: поиск научной информации, агрегирование и анализ новостных потоков, формирование сжатых признаковых описаний документов для классификации и категоризации текстовых документов, обход проблем синонимии и омонимии.
+
* Онлайновый EM-алгоритм для ARTM.
 +
* Пакетный онлайновый регуляризованный EM-алгоритм для ARTM.
-
'''Задача тематического моделирования.'''
+
'''Линейная тематизация текста.'''
-
* Вероятностное пространство. Тема как латентная (скрытая) переменная. Представление темы дискретным распределением на множестве слов.
+
* Линейная тематизация текста за один проход без матрицы <tex>\Theta</tex>.
-
* Модель смеси униграмм. Недостаток: каждый документ принадлежит только одной теме.
+
* Локализация E-шага. Линейная тематизация. Коэффициенты внимания. Attentive ARTM.
-
* Представление документа дискретным распределением на множестве тем. Гипотеза условной независимости. Порождающая модель документа как вероятностной смеси тем.
+
* Двунаправленная тематическая модель контекста.
-
* Постановка обратной задачи восстановления параметров модели по данным.
+
* Онлайновый EM-алгоритм с однопроходным локализованным E-шагом.
-
'''Вероятностный латентный семантический анализ (PLSA).'''
+
'''Аналогия с нейросетевыми моделями языка.'''
-
* Частотные оценки условных вероятностей терминов тем и тем документов. Формула Байеса для апостериорной вероятности темы. Элементарное обоснование ЕМ-алгоритма.
+
* Свёрточная нейросеть GCNN (Gated Convolutional Network)
-
* Принцип максимума правдоподобия, аналитическое решение задачи о стационарной точке функции Лагранжа, формулы M-шага.
+
* Модель само-внимания (self-attention) Query-Key-Value.
-
* Рациональный ЕМ-алгоритм (встраивание Е-шага внутрь М-шага).
+
* Трансформер и онлайновый EM-алгоритм с многопроходным локализованным E-шагом.
 +
* Нейросетевая тематическая модель Contextual-Top2Vec.
-
'''Проведение экспериментов на модельных данных.'''
+
== Реализация ЕМ-алгоритма и комбинирование регуляризаторов ==
-
* Процесс порождения терминов в документе. Генератор модельных (синтетических) данных. Генерация случайной величины из заданного дискретного распределения.
+
Презентация: [[Media:Voron25ptm-regular.pdf|(PDF,&nbsp;1,4&nbsp;МБ)]] {{важно|— обновление 14.09.2025}}.
-
* Оценивание точности восстановления модельных данных. Расстояние между дискретными распределениями. Проблема перестановки тем, венгерский алгоритм.
+
[https://youtu.be/mUMfoBlslQE?list=PLk4h7dmY2eYEnsGW3GIMvIhxPeifcQvQt старая видеозапись]
-
* Проблема неединственности и неустойчивости матричного разложения. Экспериментальное оценивание устойчивости решения.
+
-
'''Задание 1.1'''
+
'''Часто используемые регуляризаторы.'''
-
Обязательные пункты: 1–3 и любой из последующих.
+
* Сглаживание и разреживание.
-
# Реализовать генератор модельных данных. Реализовать вычисление эмпирических распределений терминов тем и тем документов.
+
* Частичное обучение.
-
# Реализовать оценку точности восстановления с учётом перестановки тем. Вычислить оценку точности для исходных модельных распределений.
+
* Декоррелирование тем.
-
# Реализовать рациональный ЕМ-алгоритм.
+
* Разреживание для отбора тем.
-
# Исследовать зависимости точности модели и точности восстановления от числа итераций и от числа тем в модели (при фиксированном числе тем в исходных данных). Что происходит, когда тем больше, чем нужно? Меньше, чем нужно?
+
-
# Исследовать влияние случайного начального приближения на точность модели и точность восстановления. Построить для них эмпирические распределения и доверительные интервалы. Можно ли утверждать, что EM-алгоритм всегда сходится к одному и тому же решению?
+
-
# Исследовать, когда проблема неустойчивости возникает, когда не возникает.
+
-
'''Литература:''' [Hofmann, 1999].
+
'''Особенности реализации ЕМ-алгоритма для ARTM.'''
 +
* Улучшение сходимости несмещёнными оценками.
 +
* Замена логарифма в функции потерь.
 +
* Матричная запись ЕМ-алгоритма.
 +
* Подбор коэффициентов регуляризации. Траектория регуляризации.
 +
* Относительные коэффициенты регуляризации.
 +
* Библиотеки BigARTM и TopicNet.
-
===Модификации алгоритма обучения модели PLSA===
+
'''Эксперименты с регуляризацией.'''
 +
* Производительность BigARTM
 +
* Оценивание качества: перплексия, когерентность, лексическое ядро
 +
* Регуляризаторы сглаживания, разреживания, декоррелирования и отбора тем.
 +
* Комбинирование регуляризаторов, эмпирические рекомендации.
 +
* Эксперименты с отбором тем на синтетических и реальных данных.
 +
* Сравнение с байесовской моделью HDP (Hierarchical Dirichlet Process).
 +
* Эффект отбрасывания малых, дублирующих и линейно зависимых тем.
-
* ''Напоминания.'' Задача тематического моделирования коллекции текстовых документов. Модель PLSA, формулы Е-шага и М-шага.
+
== Оценивание качества тематических моделей ==
 +
Презентация: [[Media:Voron24ptm-quality.pdf|(PDF,&nbsp;1,7&nbsp;МБ)]] {{важно|— обновление 30.03.2025}}.
 +
[https://youtu.be/OoIetK1pTUA?list=PLk4h7dmY2eYEnsGW3GIMvIhxPeifcQvQt старая видеозапись]
-
'''Обобщённый ЕМ-алгоритм (GEM).'''
+
'''Измерение качества тематических моделей.'''
-
* Проблема медленной сходимости EM-алгоритма на больших коллекциях. Проблема хранения трёхмерных матриц.
+
* Правдоподобие и перплексия.
-
* Эвристика частых обновлений параметров.
+
* Интерпретируемость и когерентность. Внутритекстовая когерентность.
-
* Эвристика замены средних экспоненциальным сглаживанием.
+
* Разреженность и различность.
-
'''Стохастический ЕМ-алгоритм (SEM).'''
+
'''Проверка гипотезы условной независимости.'''
-
* Гипотеза разреженности апоcтериорного распределения тем p(t|d,w).
+
* Статистики на основе KL-дивергенции и их обобщения.
-
* Эвристика замены апостериорного распределения его несмещённой оценкой.
+
* Регуляризатор семантической однородности.
-
* Алгоритм сэмплирования Гиббса.
+
* Применение статистических тестов условной независимости.
-
* Эксперименты по подбору оптимального числа сэмплирований.
+
-
'''Онлайновый ЕМ-алгоритм (OEM).'''
+
'''Проблема тематической несбалансированности в данных'''
-
* Проблема больших данных.
+
* Проблема малых тем и тем-дубликатов
-
* Эвристика разделения М-шага.
+
* Тематическая несбалансированность как основная причина неинтерпретируемости тем
-
* Эвристика разделения коллекции на пачки документов.
+
* Эксперименты с регуляризаторами отбора тем и декоррелирования
-
* Добавление новых документов (folding-in).
+
* Регуляризатор семантической однородности
 +
* Подходы к балансировке тем
-
'''Способы формирования начальных приближений.'''
+
== Тематический информационный поиск ==
-
* Случайная инициализация.
+
Презентация: [[Media:Voron24ptm-exp.pdf|(PDF,&nbsp;3,7&nbsp;МБ)]] {{важно|— обновление 24.03.2025}}.
-
* Инициализация по документам.
+
[https://youtu.be/2SkbbDYcBUQ?list=PLk4h7dmY2eYEnsGW3GIMvIhxPeifcQvQt старая видеозапись]
-
'''Частичное обучение (Semi-supervised EM).'''
+
'''Мультимодальные тематические модели.'''
-
* Виды частично размеченных данных: привязка документа к темам, привязка термина к темам, нерелевантность, переранжирование списков терминов тем и тем документов, виртуальные документы.
+
* Примеры модальностей.
-
* Использование частично размеченных данных для инициализации.
+
* Мультимодальный ARTM и регуляризованный ЕМ-алгоритм.
-
* Использование частично размеченных данных в качестве поправок на М-шаге ЕМ-алгоритма.
+
-
'''Задание 1.2'''
+
'''Иерархические тематические модели.'''
-
Обязательные пункты: 1 и любой из последующих.
+
* Иерархии тем. Послойное построение иерархии.
-
# Реализовать онлайновый алгоритм OEM.
+
* Регуляризаторы для разделения тем на подтемы.
-
# Исследовать влияние размера первой пачки и последующих пачек на качество модели.
+
* Псевдодокументы родительских тем.
-
# Исследовать влияние выбора числа итераций на внутреннем и внешнем циклах алгоритма OEM на качество и скорость построения модели.
+
* Модальность родительских тем.
-
# Исследовать возможность улучшения качество модели с помощью второго прохода по коллекции (без инициализации p(w|t)).
+
-
# Исследовать влияние частичной разметки на точность модели и точность восстановления. Проверить гипотезу, что небольшой доли правильно размеченных документов уже достаточно для существенного улучшения точности и устойчивости модели.
+
-
'''Литература:''' [Hoffman, 2010].
+
'''Эксперименты с тематическим поиском.'''
 +
* Методика измерения качества поиска.
 +
* Тематическая модель для документного поиска.
 +
* Оптимизация гиперпараметров.
 +
<!---
 +
'''Проект «Мастерская знаний»'''
 +
* Поисково-рекомендательная система SciSearch.ru
 +
* Векторный поиск для формирования тематических подборок
 +
* Требования к тематическим моделям для научного информационного поиска--->
-
===Разреживание и сглаживание===
+
== BigARTM и базовые инструменты ==
 +
''Мурат Апишев''.
 +
Презентация: [[Media:Base_instruments.zip‎|(zip,&nbsp;0,6&nbsp;МБ)]] {{важно|— обновление 17.02.2017}}.
 +
[https://youtu.be/AIN00vWOJGw Видеозапись]
-
'''Разреживание'''
+
'''Предварительная обработка текстов'''
-
* Эмпирические законы Ципфа, Ципфа-Мандельброта, Хипса.
+
* Парсинг «сырых» данных.
-
* Гипотеза разреженности распределений терминов тем и тем документов.
+
* Токенизация, стемминг и лемматизация.
-
* Принудительное разреживание в ЕМ-алгоритме. Оценка значимости (salience) параметров, метод [[OBD|Optimal Brain Damage]].
+
* Выделение энграмм.
-
* Выделение нетематических терминов.
+
* Законы Ципфа и Хипса. Фильтрация словаря коллекции. Удаление стоп-слов.
-
* Генерация реалистичных модельных данных.
+
-
* Связь разреженности и единственности неотрицательного матричного разложения.
+
-
'''Сглаживание'''
+
'''Библиотека BigARTM'''
-
* Модель латентного размещения Дирихле LDA.
+
* Методологические рекоммендации по проведению экспериментов.
-
* Свойства распределения Дирихле, сопряжённость с мультиномиальным распределением.
+
* Установка [[BigARTM]].
-
* Байесовский вывод. Сглаженные частотные оценки условных вероятностей.
+
* Формат и импорт входных данных.
-
* Максимизация обоснованности модели. Численные методы оптимизации гиперпараметров.
+
* Обучение простой модели (без регуляризации): создание, инициализация, настройка и оценивание модели.
-
* Сравнение LDA и PLSA. Экспериментальные факты: LDA скорее улучшает оценки редких слов, чем снижает переобучение.
+
* Инструмент визуализации тематических моделей VisARTM. Основные возможности, демонстрация работы.
-
* Дилемма разреживания и сглаживания.
+
-
'''Задание 1.3'''
+
'''Дополнительный материал:'''
-
Обязательные пункты: 1 и любой из остальных.
+
* Презентация: [[Media:VoronApishev17ptm5.pdf|(PDF,&nbsp;1,5&nbsp;МБ)]] {{важно|— обновление 17.03.2017}}.
-
# Реализовать разреживание в онлайновом алгоритме OEM.
+
* [https://www.youtube.com/watch?v=2LEQuLRxaIY&t=1s '''Видео'''] {{важно|— обновление 22.03.2017}}.
-
# Исследовать зависимость точности модели и точности восстановления от степени разреженности исходных модельных данных.
+
* Воркшоп по BigARTM на DataFest'4. [https://www.youtube.com/watch?v=oQcHEm2-7PM '''Видео'''].
-
# Исследовать влияние разреживания на точность модели и точность восстановления. Проверить гипотезу, что если исходные данные разрежены, то разреживание существенно улучшает точность восстановления и слабо влияет на точность модели.
+
-
# Исследовать влияние сглаживания на точность модели и точность восстановления.
+
-
'''Литература:''' [Blei, 2003].
+
== Проект «Мастерская знаний» ==
 +
Презентация: [[Media:Voron25ptm-kf.png|(PNG,&nbsp;8,1&nbsp;МБ)]] {{важно|— обновление 3.03.2025}}.
-
===Методы оценивания качества вероятностных тематических моделей===
+
'''Проект «Мастерская знаний»'''
-
'''Реальные данные.'''
+
* Цели, задачи, концепция проекта. Тематические подборки научных текстов.
-
* Текстовые коллекции, библиотеки алгоритмов, источники информации.
+
* Модель векторизации текста для поиска и рекомендаций научных статей.
-
* Внутренние и внешние критерии качества.
+
* Основные сервисы «Мастерской знаний».
-
* Дополнительные данные для построения внешних критериев качества.
+
-
'''Перплексия.'''
+
'''Место тематического моделирования в «Мастерской знаний»'''
-
* Определение и интерпретация перплекcии.
+
* Сервис тематизации подборки.
-
* Перплексия контрольной коллекции. Проблема новых слов в контрольной коллекции.
+
* Сервисы выявления научных трендов и построения хронологических карт.
 +
* Вспомогательные функции в сервисе полуавтоматической суммаризации.
-
'''Статистические тесты условной независимости.'''
+
'''Карты знаний'''
-
* Методология проверки статистических гипотез. Критерий согласия хи-квадрат Пирсона. Матрица кросс-табуляции «термины–документы» для заданной темы.
+
* Задачи иерархической суммаризации одной статьи, подборки статей.
-
* Проблема разреженности распределения. Эксперименты, показывающие неадекватность асимптотического распределения статистики хи-квадрат.
+
* Принципы построения интеллект-карт и карт знаний.
-
* Статистики модифицированного хи-квадрат, Кульбака-Лейблера, Хеллингера.
+
* Что такое «тема»? Отличия тематизации и картирования.
-
* Обобщённое семейство статистик Кресси-Рида.
+
-
* Алгоритм вычисления квантилей распределения статистики Кресси-Рида.
+
-
* Рекуррентное вычисление статистики Кресси-Рида.
+
-
'''Оценивание интерпретируемости тематических моделей.'''
+
== Мультимодальные тематические модели ==
-
* Корректность определения асессорами лишних терминов в темах и лишних тем в документах.
+
Презентация: [[Media:Voron25ptm-modal.pdf|(PDF,&nbsp;2,8&nbsp;МБ)]] {{важно|— обновление 7.04.2025}}.
-
* Визуализация тематических моделей.
+
[https://youtu.be/AfwH0A3NJCQ?list=PLk4h7dmY2eYE_JjvexGUS5MSozoxDFovp старая видеозапись]
-
''' Оценивание качества темы.'''
+
'''Мультиязычные тематические модели.'''
-
* Чёткость темы: число типичных документов темы, число типичных терминов темы.
+
* Параллельные и сравнимые коллекции.
-
* Однородность (радиус) темы.
+
* Регуляризаторы для учёта двуязычных словарей.
-
* Конфликтность темы (близость темы к другим темам).
+
* Кросс-язычный информационный поиск.
-
'''Критерии качества классификации и ранжирования.'''
+
'''Трёхматричные модели.'''
-
* Полнота, точность и F-мера в задачах классификации и ранжирования.
+
* Модели трёхматричных разложений. Понятие порождающей модальности.
-
* Критерии качества ранжирования: MAP, DCG, NDCG.
+
* Автор-тематическая модель (author-topic model).
-
* Оценка качества тематического поиска документов по их длинным фрагментам.
+
* Модель для выделения поведений объектов в видеопотоке.
-
'''Задание 1.4.'''
+
'''Тематические модели транзакционных данных.'''
-
# Применить OEM к реальным коллекциям.
+
* Примеры транзакционных данных в рекомендательных системах, социальных и рекламных сетях.
-
# Исследовать на реальных данных зависимость внутренних и внешних критериев качества от эвристических параметров алгоритма обучения OEM.
+
* Гиперграфовая модель ARTM. Теорема о необходимом условии максимума регуляризованного правдоподобия.
-
# В экспериментах на реальных данных построить зависимости перплексии обучающей и контрольной коллекции от числа итераций и числа тем.
+
* Транзакционные данные в рекомендательных системах. Симметризованная гиперграфовая модель ARTM.
 +
* Гиперграфовые тематические модели языка. Тематическая модель предложений и сегментоидов.
 +
* Анализ транзакционных данных для выявления паттернов экономического поведения клиентов банка. '''[https://youtu.be/0q5p7xP4cdA?t=15168 Видео]'''.
 +
* Анализ банковских транзакционных данных для выявления видов деятельности компаний.
-
'''Литература:''' [Blei, 2003].
+
== Анализ зависимостей ==
 +
Презентация: [[Media:Voron24ptm-rel.pdf|(PDF,&nbsp;2,5&nbsp;МБ)]] {{важно|— обновление 14.04.2025}}.
 +
[https://youtu.be/uKCMr9yK3gw?list=PLk4h7dmY2eYE_JjvexGUS5MSozoxDFovp старая видеозапись]
-
===Иерархические тематические модели===
+
'''Зависимости, корреляции, связи.'''
-
* Задачи категоризации текстов. Стандартный метод решения — сведение к последовательности задач классификации.
+
* Тематические модели классификации и регрессии.
 +
* Модель коррелированных тем CTM (Correlated Topic Model).
 +
* Регуляризаторы гиперссылок и цитирования. Выявление тематических влияний в научных публикациях.
-
'''Тематическая модель с фиксированной иерархией.'''
+
'''Время и пространство.'''
-
* Вероятностная формализация отношения «тема–подтема». Тождества, связывающие распределения тем и подтем
+
* Регуляризаторы времени.
-
* Задача построения иерархического тематического профиля документа.
+
* Обнаружение и отслеживание тем.
-
* Задача построения одного уровня иерархии. Аналитическое решение задачи максимизации правдоподобия, формулы M-шага.
+
* Гео-пространственные модели.
-
* Онлайновый иерархический EM-алгоритм.
+
-
* Необходимость частичного обучения для задачи категоризации.
+
-
* Необходимость разреживания для построения иерархического тематического профиля документа.
+
-
'''Сетевые иерархические модели.'''
+
'''Социальные сети.'''
-
* Возможность для темы иметь несколько родительских тем.
+
* Сфокусированный поиск в социальных медиа (пример: поиск этно-релевантного контента).
-
* Дивергенция Кульбака–Лейблера. Свойства KL-дивергенции.
+
* Выявление тематических сообществ. Регуляризаторы для направленных и ненаправленных связей.
-
* Интерпретация KL-дивергенции как степени вложенности распределений. Оценивание силы связей «тема-подтема» KL-дивергенцией.
+
* Регуляризаторы для выявления социальных ролей пользователей.
-
* Дополнение тематического дерева до тематической сети.
+
-
'''Иерархические процессы Дирихле.'''
+
== Именование и суммаризация тем ==
-
* Оптимизация числа тем в плоской модели.
+
Презентация: [[Media:Voron25ptm-sum.pdf|(PDF,&nbsp;2,9&nbsp;МБ)]] {{важно|— обновление 28.04.2025}}.
-
* Создание новых тем в иерархических моделях.
+
[https://youtu.be/nShxhkPbGWY старая видеозапись]
-
* Нисходящие и восходящие иерархические модели.
+
-
===Робастные тематические модели===
+
'''Методы суммаризации текстов.'''
-
''Робастность'' — устойчивость модели к нарушениям исходных предпосылок, заложенных в основу модели.
+
* Задачи автоматической суммаризации текстов. Подходы к суммаризации: extractive и abstractive.
 +
* Оценивание и отбор предложений для суммаризации. Релаксационный метод для многокритериальной дискретной оптимизации.
 +
* Тематическая модель предложений для суммаризации.
 +
* Критерии качества суммаризации. Метрики ROUGE, BLUE.
-
'''Робастная тематическая модель с усечёнными распределениями'''
+
'''Автоматическое именование тем (topic labeling).'''
-
* Явления синонимии, взаимной заменяемости терминов, эффект burstiness.
+
* Формирование названий-кандидатов.
-
* Гипотеза об усечённых распределениях терминов тем в документах как ослабление гипотезы условной независимости.
+
* Релевантность, покрытие, различность.
-
* Аналитическое решение задачи о стационарной точке функции Лагранжа. Модификация ЕМ-алгоритма.
+
* Оценивание качества именования тем.
-
'''Робастная тематическая модель с фоном и шумом'''
+
'''Задача суммаризации темы'''
-
* Аналитическое решение задачи о стационарной точке функции Лагранжа, формулы M-шага.
+
* Задача ранжирования документов
-
* Аддитивный и мультипликативный М-шаг.
+
* Задача фильтрации репрезентативных релевантных фраз.
-
* Оценки тематичности слов.
+
* Задача генерации связного текста
-
* Эксперименты: робастная модель не нуждается в регуляризации и более устойчива к разреживанию.
+
-
'''Задание 1.5'''
+
== Проект «Тематизатор» ==
-
Обязательные пункты: 1,2 и любой из остальных.
+
Презентация: [[Media:Voron25ptm-project.pdf|(PDF,&nbsp;6,7&nbsp;МБ)]] {{важно|— обновление 21.04.2025}}.
-
# Реализовать генерацию модельных данных с фоном и шумом.
+
[https://youtu.be/LctW1J93lmw?list=PLk4h7dmY2eYE_JjvexGUS5MSozoxDFovp Видеозапись]
-
# Реализовать робастный алгоритм OEM.
+
-
# Исследовать зависимость точности робастной модели и точности восстановления от параметров априорной вероятности фона и шума. Что происходит с точностью модели, когда эти параметры «плохо угаданы»?
+
-
# Исследовать возможность оптимизации параметров априорной вероятности шума и фона.
+
-
# Исследовать зависимость перплексии и качества поиска от априорной вероятности шума.
+
-
# Исследовать влияние разреживания тематической компоненты робастной модели на перплексию и качество поиска.
+
-
'''Литература:''' [Chemudugunta, 2006].
+
'''Визуализация тематических моделей'''
 +
* Концепция distant reading.
 +
* Карты знаний, иерархии, взаимосвязи, динамика, сегментация.
 +
* Спектр тем.
 +
* Визуализация матричного разложения.
-
===Тематические модели с выделением ключевых фраз===
+
'''Примеры прикладных задач'''
 +
* Поиск этно-релевантных тем в социальных сетях.
 +
* Анализ программ развития российских вузов.
 +
* Поиск и рубрикация научных статей на 100 языках.
 +
* Проекты Школы Прикладного Анализа Данных.
-
'''Энграммные модели'''
+
'''Анализ требований к «Тематизатору»'''
-
* Задача выделения терминов как ключевых фраз (словосочетаний). Словари терминов.
+
* Функциональные требования.
-
* Морфологический анализ текста.
+
* Требования к интерпретируемости.
-
* Синтаксический анализ текста. Выявление подчинительных связей.
+
* Основной пользовательский сценарий: Загрузка, Предобработка, Моделирование, Визуализация, Коррекция.
-
* Статистические методы поиска коллокаций. Критерий C-Value.
+
* Этапизация работ.
-
* Совмещённый статистический критерий TF-IDF & CValue.
+
-
* Энграммный онлайновый алгоритм на основе синтаксического анализа и фильтрации терминов путём разреживания.
+
-
* Влияние выделения ключевых фраз на качество модели и интерпретируемость тем.
+
-
===Многоязычные тематические модели===
+
== Тематические модели сочетаемости слов ==
 +
Презентация: [[Media:Voron25ptm-cooc.pdf|(PDF,&nbsp;1,4&nbsp;МБ)]] {{важно|— обновление 5.05.2025}}.
 +
[https://youtu.be/zuN5HECqv3I?list=PLk4h7dmY2eYEnsGW3GIMvIhxPeifcQvQt старая видеозапись] и ещё одна
 +
[https://youtu.be/k46UzzMSKt0?list=PLk4h7dmY2eYEnsGW3GIMvIhxPeifcQvQt&t=22 старая видеозапись]
-
===Распараллеливание алгоритмов обучения тематических моделей===
+
'''Мультиграммные модели и выделение терминов.'''
 +
* Алгоритм TopMine для быстрого поиска частых фраз. Критерии выделения коллокаций.
 +
* Синтаксический разбор. Нейросетевые синтаксические анализаторы SyntaxNet, UDpipe.
 +
* Критерии тематичности фраз.
 +
* Комбинирование синтаксической, статистической и тематической фильтрации фраз.
-
==Литература==
+
'''Тематические модели дистрибутивной семантики.'''
-
'''Основная литература'''
+
* Дистрибутивная гипотеза. Модели CBOW и SGNS в программе word2vec.
 +
* Модель битермов BTM (Biterm Topic Model) для тематизации коллекций коротких текстов.
 +
<!--* Модель всплесков BBTM (Bursty Biterm Topic Model). -->
 +
* Модели WNTM (Word Network Topic Model) и WTM (Word Topic Model). Связь с моделью word2vec.
 +
<!--* Регуляризаторы когерентности. -->
-
# Маннинг К., Рагхаван П., Шютце Х. Введение в информационный поиск. — Вильямс, 2011.
+
'''Позиционный регуляризатор в ARTM.'''
-
# Daud A., Li J., Zhou L., Muhammad F. Knowledge discovery through directed probabilistic topic models: a survey // Frontiers of Computer Science in China.— 2010.— Vol. 4, no. 2. — Pp. 280–301.
+
* Гипотеза о сегментной структуре текста.
-
# Asuncion A., Welling M., Smyth P., Teh Y. W. On smoothing and inference for topic models // Proceedings of the International Conference on Uncertainty in Artificial Intelligence. — 2009.
+
* Регуляризация и пост-обработка Е-шага. Формулы М-шага.
 +
* Примеры регуляризаторов Е-шага. Разреживание распределения p(t|d,w). Сглаживание тематики слов по контексту.
 +
 
 +
'''Дополнительный материал:'''
 +
* ''Потапенко А. А.'' Векторные представления слов и документов. DataFest'4. [https://www.youtube.com/watch?v=KEXWC-ICH_Y '''Видео'''].
 +
 
 +
== Байесовское обучение модели LDA ==
 +
Презентация: [[Media:Voron25ptm-bayes.pdf|(PDF,&nbsp;2,1&nbsp;МБ)]] {{важно|— обновление 11.05.2025}}.
 +
[https://youtu.be/ZAtfN0ApQh0?list=PLk4h7dmY2eYEnsGW3GIMvIhxPeifcQvQt&t=20 старая видеозапись]
 +
 
 +
'''Классические модели PLSA, LDA.'''
 +
* Модель PLSA.
 +
* Модель LDA. Распределение Дирихле и его свойства.
 +
* Максимизация апостериорной вероятности для модели LDA.
 +
 
 +
'''Вариационный байесовский вывод.'''
 +
* Основная теорема вариационного байесовского вывода.
 +
* [[Вариационный байесовский вывод]] для модели LDA.
 +
* VB ЕМ-алгоритм для модели LDA.
 +
 
 +
'''Сэмплирование Гиббса.'''
 +
* Основная теорема о сэмплировании Гиббса.
 +
* [[Сэмплирование Гиббса]] для модели LDA.
 +
* GS ЕМ-алгоритм для модели LDA.
 +
 
 +
'''Замечания о байесовском подходе.'''
 +
* Оптимизация гиперпараметров в LDA.
 +
* Графическая нотация (plate notation). [http://zinkov.com/posts/2013-07-28-stop-using-plates Stop using plate notation].
 +
* Сравнение байесовского подхода и ARTM.
 +
* Как читать статьи по байесовским моделям и строить эквивалентные ARTM-модели.
 +
 
 +
<!---
 +
== Теория ЕМ-алгоритма ==
 +
Презентация: [[Media:Voron24ptm-emlda.pdf|(PDF,&nbsp;2,0&nbsp;МБ)]] {{важно|обновление 25.10.2024}}.
 +
[https://youtu.be/DBF5QAFC1V0?list=PLk4h7dmY2eYEnsGW3GIMvIhxPeifcQvQt старая видеозапись]
 +
 
 +
'''Общий EM-алгоритм.'''
 +
* EM-алгоритм для максимизации неполного правдоподобия.
 +
* Регуляризованный EM-алгоритм. Сходимость в слабом смысле.
 +
* Альтернативный вывод формул ARTM.
 +
 
 +
'''Эксперименты с моделями PLSA, LDA.'''
 +
* Проблема неустойчивости (на синтетических данных).
 +
* Проблема неустойчивости (на реальных данных).
 +
* Проблема переобучения и робастные модели.
 +
 
 +
== Моделирование сегментированного текста ==
 +
Презентация: [[Media:Voron24ptm-segm.pdf|(PDF,&nbsp;2,1&nbsp;МБ)]] {{важно|— обновление 21.11.2024}}.
 +
[https://youtu.be/k46UzzMSKt0?list=PLk4h7dmY2eYEnsGW3GIMvIhxPeifcQvQt&t=22 старая видеозапись]
 +
 
 +
'''Мультиграммные модели.'''
 +
* Модель BigramTM.
 +
* Модель Topical N-grams (TNG).
 +
* Мультимодальная мультиграммная модель.
 +
 
 +
'''Тематические модели предложений.'''
 +
* Тематическая модель предложений senLDA.
 +
* Модель коротких сообщений Twitter-LDA.
 +
* Сегментоиды. Лексические цепочки.
 +
 
 +
'''Тематическая сегментация текста.'''
 +
* Метод TopicTiling. Критерии определения границ сегментов.
 +
* Критерии качества сегментации.
 +
* Оптимизация параметров модели TopicTiling.
 +
--->
 +
 
 +
=Отчетность по курсу=
 +
Условием сдачи курса является выполнение индивидуальных практических заданий.
 +
 
 +
'''Рекомендуемая структура отчёта об исследовании:'''
 +
* Постановка задачи: неформальное описание, ДНК (дано–найти–критерий), структура данных
 +
* Описание простого решения baseline
 +
* Описание основного решения и его вариантов
 +
* Описание набора данных и методики экспериментов
 +
* Результаты экспериментов по подбору гиперпараметров основного решения
 +
* Результаты экспериментов по сравнению основного решения с baseline
 +
* Примеры визуализации модели
 +
* Выводы: что работает, что не работает, инсайты
 +
* Ссылка на код
 +
 
 +
'''Примеры отчётов:'''
 +
* [[Media:kibitova16ptm.pdf|Валерия Кибитова, 2016]]
 +
* [[Media:filin18ptm.pdf|Максим Филин, 2018]]
 +
* [[Media:ikonnikova18ptm.pdf|Мария Иконникова, 2018]]
 +
 
 +
=Литература=
 +
 
 +
# ''Воронцов К. В.'' [[Media:voron17survey-artm.pdf|Вероятностное тематическое моделирование: теория регуляризации ARTM и библиотека с открытым кодом BigARTM]]. 2025.
 +
# ''Xiaobao Wu, Thong Nguyen, Anh Tuan Luu.'' [https://arxiv.org/abs/2401.15351 A Survey on Neural Topic Models: Methods, Applications, and Challenges]. 2023.
 +
# ''Rob Churchill, Lisa Singh.'' [https://dl.acm.org/doi/10.1145/3507900 The Evolution of Topic Modeling]. 2022.
 +
# ''He Zhao, Dinh Phung, Viet Huynh, Yuan Jin, Lan Du, Wray Buntine.'' [https://arxiv.org/abs/2103.00498 Topic Modelling Meets Deep Neural Networks: A Survey]. 2021.
 +
# ''Hamed Jelodar, Yongli Wang, Chi Yuan, Xia Feng.'' [https://arxiv.org/ftp/arxiv/papers/1711/1711.04305.pdf Latent Dirichlet Allocation (LDA) and Topic modeling: models, applications, a survey]. 2017.
 +
# ''Hofmann T.'' Probabilistic latent semantic indexing // Proceedings of the 22nd annual international ACM SIGIR conference on Research and development in information retrieval. — New York, NY, USA: ACM, 1999. — Pp. 50–57.
 +
# ''Blei D. M., Ng A. Y., Jordan M. I.'' Latent Dirichlet allocation // Journal of Machine Learning Research. — 2003. — Vol. 3. — Pp. 993–1022.
 +
# ''Asuncion A., Welling M., Smyth P., Teh Y. W.'' On smoothing and inference for topic models // Proceedings of the International Conference on Uncertainty in Artificial Intelligence. — 2009.
 +
<!--
 +
# ''Янина А. О., Воронцов К. В.'' [http://jmlda.org/papers/doc/2016/no2/Ianina2016Multimodal.pdf Мультимодальные тематические модели для разведочного поиска в коллективном блоге] // Машинное обучение и анализ данных. 2016. T.2. №2. С.173-186.
 +
# ''Воронцов К.В.'' Тематическое моделирование в BigARTM: теория, алгоритмы, приложения. [[Media:Voron-2015-BigARTM.pdf|Voron-2015-BigARTM.pdf]].
 +
# ''Воронцов К.В.'' Лекции по тематическому моделированию. [[Media:Voron-2013-ptm.pdf|Voron-2013-ptm.pdf]].
'''Дополнительная литература'''
'''Дополнительная литература'''
-
# Воронцов К. В., Потапенко А. А. Регуляризация, робастность и разреженность вероятностных тематических моделей // Компьютерные исследования и моделирование 2012 Т. 4, №12. С 693–706.
+
 
-
# Blei D. M., Ng A. Y., Jordan M. I. Latent Dirichlet allocation // Journal of Machine Learning Research. — 2003. — Vol. 3. — Pp. 993–1022.
+
# Воронцов К. В., Потапенко А. А. [http://jmlda.org/papers/doc/2013/no6/Vorontsov2013TopicModeling.pdf Модификации EM-алгоритма для вероятностного тематического моделирования] // Машинное обучение и анализ данных. — 2013. — T. 1, № 6. С. 657–686.
 +
# Воронцов К. В., Фрей А. И., Ромов П. А., Янина А. О., Суворова М. А., Апишев М. А. [[Media:Voron15damdid.pdf|BigARTM: библиотека с открытым кодом для тематического моделирования больших текстовых коллекций]] // Аналитика и управление данными в областях с интенсивным использованием данных. XVII Международная конференция DAMDID/RCDL’2015, Обнинск, 13-16 октября 2015.
 +
# Маннинг К., Рагхаван П., Шютце Х. Введение в информационный поиск. — Вильямс, 2011.
# Chemudugunta C., Smyth P., Steyvers M. Modeling general and specific aspects of documents with a probabilistic topic model // Advances in Neural Information Processing Systems. — MIT Press, 2006. — Vol. 19. — Pp. 241–248.
# Chemudugunta C., Smyth P., Steyvers M. Modeling general and specific aspects of documents with a probabilistic topic model // Advances in Neural Information Processing Systems. — MIT Press, 2006. — Vol. 19. — Pp. 241–248.
 +
# Daud A., Li J., Zhou L., Muhammad F. Knowledge discovery through directed probabilistic topic models: a survey // Frontiers of Computer Science in China.— 2010.— Vol. 4, no. 2. — Pp. 280–301.
# Dempster A. P., Laird N. M., Rubin D. B. Maximum likelihood from incomplete data via the EM algorithm // J. of the Royal Statistical Society, Series B. — 1977. — no. 34. — Pp. 1–38.
# Dempster A. P., Laird N. M., Rubin D. B. Maximum likelihood from incomplete data via the EM algorithm // J. of the Royal Statistical Society, Series B. — 1977. — no. 34. — Pp. 1–38.
-
# Hofmann T. Probabilistic latent semantic indexing // Proceedings of the 22nd annual international ACM SIGIR conference on Research and development in information retrieval. — New York, NY, USA: ACM, 1999. — Pp. 50–57.
 
# Hoffman M. D., Blei D. M., Bach F. R. Online Learning for Latent Dirichlet Allocation // NIPS, 2010. Pp. 856–864.
# Hoffman M. D., Blei D. M., Bach F. R. Online Learning for Latent Dirichlet Allocation // NIPS, 2010. Pp. 856–864.
# Lu Y., Mei Q., Zhai C. Investigating task performance of probabilistic topic models: an empirical study of PLSA and LDA // Information Retrieval. — 2011. — Vol.14, no.2. — Pp. 178–203.
# Lu Y., Mei Q., Zhai C. Investigating task performance of probabilistic topic models: an empirical study of PLSA and LDA // Information Retrieval. — 2011. — Vol.14, no.2. — Pp. 178–203.
 +
# Vorontsov K. V., Potapenko A. A. [[Media:Voron14mlj.pdf|Additive Regularization of Topic Models]] // Machine Learning. Special Issue “Data Analysis and Intelligent Optimization with Applications”: Volume 101, Issue 1 (2015), Pp. 303-323. [[Media:Voron14mlj-rus.pdf|Русский перевод]]
 +
# Vorontsov K. V., Frei O. I., Apishev M. A., Romov P. A., Suvorova M. A., Yanina A. O. [[Media:Voron15cikm-tm.pdf|Non-Bayesian Additive Regularization for Multimodal Topic Modeling of Large Collections]] // Proceedings of the 2015 Workshop on Topic Models: Post-Processing and Applications, October 19, 2015, Melbourne, Australia. ACM, New York, NY, USA. pp. 29–37.
# Wallach H., Mimno D., McCallum A. Rethinking LDA: Why priors matter // Advances in Neural Information Processing Systems 22 / Ed. by Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, A. Culotta. — 2009. — Pp. 1973–1981.
# Wallach H., Mimno D., McCallum A. Rethinking LDA: Why priors matter // Advances in Neural Information Processing Systems 22 / Ed. by Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, A. Culotta. — 2009. — Pp. 1973–1981.
-
# Zavitsanos E., Paliouras G., Vouros G. A. Non-parametric estimation of topic hierarchies from texts with hierarchical Dirichlet processes // Journal of Machine Learning Research. — 2011. — Vol. 12. — Pp. 2749–2775.
+
-->
-
== Ссылки ==
+
= Ссылки =
* [[Тематическое моделирование]]
* [[Тематическое моделирование]]
-
* Конспект лекций: [[Media:Voron-2013-ptm.pdf|Voron-2013-ptm.pdf, 500 КБ]] {{важно|(обновление 22 апреля 2013)}}.
+
* [[Аддитивная регуляризация тематических моделей]]
-
* Презентация доклада на семинаре в [http://www2.viniti.ru ВИНИТИ РАН], 23 апреля 2013. '''[[Media:voron-viniti-23apr2013.pdf|(PDF,&nbsp;2.0&nbsp;МБ)]]'''.
+
* [[Коллекции документов для тематического моделирования]]
 +
* [[BigARTM]]
 +
* [http://www.youtube.com/watch?v=vSzsuq7uHPE Видеозапись лекции на ТМШ, 19 июня 2015]
 +
* ''Воронцов К.В.'' [[Media:voron-2014-task-PTM.pdf|Практическое задание по тематическому моделированию, 2014.]]
 +
'''Материалы для первого ознакомления:'''
 +
* ''[[Media:BigARTM-short-intro.pdf|Тематический анализ больших данных]]''. Краткое популярное введение в BigARTM.
 +
* ''[http://postnauka.ru/video/61910 Разведочный информационный поиск]''. Видеолекция на ПостНауке.
 +
* ''[https://postnauka.ru/faq/86373 Тематическое моделирование]''. FAQ на ПостНауке, совместно с Корпоративным университетом Сбербанка.
 +
* ''[https://www.youtube.com/watch?v=MhNbccnVk5Y Байесовская и классическая регуляризация в вероятностном тематическом моделировании]''. Научно-образовательный семинар «Актуальные проблемы прикладной математики» Новосибирского Государственного Университета, 19 февраля 2021. [[Media:Voron-2021-02-19.pdf|Презентация]].
 +
* ''[https://habrahabr.ru/company/yandex/blog/313340 Тематическое моделирование на пути к разведочному информационному поиску]''. Лекция на DataFest3, 10 сентября 2016. [https://www.youtube.com/watch?v=frLW8UVp_Ik&index=5&list=PLJOzdkh8T5kqfhWXhtYevTUHIvrylDLYu Видеозапись].
-
{{Stub}}
+
= Подстраницы =
 +
{{Служебная:Prefixindex/Вероятностные тематические модели (курс лекций, К.В.Воронцов)/}}
[[Категория:Учебные курсы]]
[[Категория:Учебные курсы]]
 +
 +
 +
<!---------------------------------------------------
 +
 +
'''Модели связного текста.'''
 +
* Контекстная документная кластеризация (CDC).
 +
* Метод лексических цепочек.
 +
 +
'''Инициализация.'''
 +
* Случайная инициализация. Инициализация по документам.
 +
* Контекстная документная кластеризация.
 +
* Поиск якорных слов. Алгоритм Ароры.
 +
 +
'''Расширяемые тематические модели.'''
 +
* Пакетный ЕМ-алгоритм.
 +
* Обнаружение новых тем в потоке документов. Инициализация новых тем.
 +
* Проблемы агрегирования коллекций. Жанровая и тематическая фильтрация документов.
 +
 +
== Анализ разнородных данных ==
 +
Презентация: [[Media:Voron18ptm-misc.pdf|(PDF,&nbsp;1,6&nbsp;МБ)]] {{важно|— обновление 03.05.2018}}.
 +
 +
== Примеры приложений тематического моделирования ==
 +
Презентация: [[Media:Voron17ptm11.pdf|(PDF,&nbsp;3,3&nbsp;МБ)]] {{важно|— обновление 16.05.2017}}.
 +
 +
'''Примеры приложений тематического моделирования.'''
 +
* Задача поиска релевантных тем в социальных сетях и новостных потоках.
 +
* Динамическая модель коллекции пресс-релизов.
 +
* Разведочный поиск в коллективном блоге.
 +
* Сценарный анализ записей разговоров контактного центра.
 +
* [[Технология информационного анализа электрокардиосигналов|Информационный анализ электрокардиосигналов]] для скрининговой диагностики.
 +
 +
== Инициализация, траектория регуляризации, тесты адекватности ==
 +
Презентация: [[Media:Voron-PTM-10.pdf|(PDF,&nbsp;Х,Х&nbsp;МБ)]] {{важно|— обновление ХХ.ХХ.2016}}.
 +
 +
'''Траектория регуляризации.'''
 +
* Задача оптимизации трактории в пространстве коэффициентов регуляризации.
 +
* Относительные коэффициенты регуляризации.
 +
* Пространство коэффициентов регуляризации и пространство метрик качества. Регрессионная связь между ними. Инкрементная регрессия.
 +
* Подходы к скаляризации критериев.
 +
* Обучение с подкреплением. Контекстный многорукий бандит. Верхние доверительные границы (UCB).
 +
 +
'''Тесты адекватности.'''
 +
* Статистические тесты условной независимости. Методология проверки статистических гипотез. Критерий согласия хи-квадрат Пирсона.
 +
* Проблема разреженности распределения. Эксперименты, показывающие неадекватность асимптотического распределения статистики хи-квадрат.
 +
* Статистики модифицированного хи-квадрат, Кульбака-Лейблера, Хеллингера.
 +
* Обобщённое семейство статистик Кресси-Рида.
 +
* Эмпирическое оценивание квантилей распределения статистики Кресси-Рида.
 +
* Применения теста условной независимости для поиска плохо смоделированных тем, документов, терминов. Поиск тем для расщепления.
 +
 +
== Обзор оценок качества тематических моделей ==
 +
Презентация: [[Media:Voron-PTM-11.pdf|(PDF,&nbsp;Х,Х&nbsp;МБ)]] {{важно|— обновление ХХ.ХХ.2016}}.
 +
 +
* Внутренние и внешние критерии качества.
 +
* Перплексия и правдоподобие. Интерпретация перплекcии. Перплексия контрольной коллекции. Проблема новых слов в контрольной коллекции. Проблема сравнения моделей с разными словарями. Относительная перплексия.
 +
 +
''' Оценивание качества темы.'''
 +
* Лексическое ядро темы: множество типичных терминов темы.
 +
* Чистота и контрастность темы
 +
* Документное ядро темы: множество типичных документов темы.
 +
* Однородность темы: распределение расстояний между p(w|t) и p(w|t,d).
 +
* Конфликтность темы: близость темы к другим темам.
 +
* Интерпретируемость темы: экспертные оценки, метод интрузий, когерентность. Взрыв интерпретируемости в n-граммных моделях.
 +
 +
'''Устойчивость и полнота.'''
 +
* Эксперименты по оцениванию устойчивости, интерпретируемости и полноты.
 +
* Построение выпуклых оболочек тем и фильтрация зависимых тем в сериях тематических моделей.
 +
 +
'''Критерии качества классификации и ранжирования.'''
 +
* Полнота, точность и F-мера в задачах классификации и ранжирования.
 +
* Критерии качества ранжирования: MAP, DCG, NDCG.
 +
* Оценка качества тематического поиска документов по их длинным фрагментам.
 +
 +
* Вывод M-шага для негладкого регуляризатора.
 +
* Тематическая модель текста и изображений. Задача аннотирования изображений.
 +
-->

Текущая версия

Содержание

Спецкурс читается студентам 2—5 курсов на кафедре «Математические методы прогнозирования» ВМиК МГУ с 2013 года и студентам 6 курса на кафедре «Интеллектуальные системы» ФУПМ МФТИ с 2019 года.

В спецкурсе изучается вероятностное тематическое моделирование (topic modeling) коллекций текстовых документов. Тематическая модель определяет, какие темы содержатся в большой текстовой коллекции, и к каким темам относится каждый документ. Тематические модели позволяют искать тексты по смыслу, а не по ключевым словам, и создавать информационно-поисковые системы нового поколения, основанные на парадигме семантического разведочного поиска (exploratory search). Рассматриваются тематические модели для классификации, категоризации, сегментации, суммаризации текстов естественного языка, а также для рекомендательных систем, анализа банковских транзакционных данных, анализа биомедицинских сигналов. В спецкурсе развивается многокритериальный подход к построению моделей с заданными свойствами — аддитивная регуляризация тематических моделей (АРТМ). Он основан на регуляризации некорректно поставленных задач стохастического матричного разложения. Особое внимание уделяется методам лингвистической регуляризации для моделирования связности текста. Предполагается проведение студентами численных экспериментов на модельных и реальных данных с помощью библиотеки тематического моделирования BigARTM.

От студентов требуются знания курсов линейной алгебры, математического анализа, теории вероятностей. Знание математической статистики, методов оптимизации, машинного обучения, языков программирования Python и С++ желательно, но не обязательно.

Краткая ссылка на эту страницу: bit.ly/2EGWcjA.

Основной материал:

Программа курса

Задача тематического моделирования

Презентация: (PDF, 1,7 МБ) — обновление 11.09.2025. старая видеозапись

Цели и задачи тематического моделирования.

Аддитивная регуляризация тематических моделей.

  • Понятие некорректно поставленной задачи по Адамару. Регуляризация.
  • Лемма о максимизации на единичных симплексах. Условия Каруша–Куна–Таккера.
  • Теорема о необходимом условии максимума регуляризованного правдоподобия для ARTM.
  • Классические тематические модели PLSA и LDA как частные случаи ARTM.

Практика тематического моделирования.

  • Проект с открытым кодом BigARTM.
  • Этапы решения практических задач.
  • Методы предварительной обработки текста.
  • Датасеты и практические задания по курсу.

Моделирование локального контекста

Презентация: (PDF, 3,2 МБ) — обновление 14.09.2025. старая видеозапись

Онлайновый ЕМ-алгоритм.

  • Рациональный ЕМ-алгоритм (встраивание Е-шага внутрь М-шага).
  • Онлайновый EM-алгоритм для ARTM.
  • Пакетный онлайновый регуляризованный EM-алгоритм для ARTM.

Линейная тематизация текста.

  • Линейная тематизация текста за один проход без матрицы \Theta.
  • Локализация E-шага. Линейная тематизация. Коэффициенты внимания. Attentive ARTM.
  • Двунаправленная тематическая модель контекста.
  • Онлайновый EM-алгоритм с однопроходным локализованным E-шагом.

Аналогия с нейросетевыми моделями языка.

  • Свёрточная нейросеть GCNN (Gated Convolutional Network)
  • Модель само-внимания (self-attention) Query-Key-Value.
  • Трансформер и онлайновый EM-алгоритм с многопроходным локализованным E-шагом.
  • Нейросетевая тематическая модель Contextual-Top2Vec.

Реализация ЕМ-алгоритма и комбинирование регуляризаторов

Презентация: (PDF, 1,4 МБ) — обновление 14.09.2025. старая видеозапись

Часто используемые регуляризаторы.

  • Сглаживание и разреживание.
  • Частичное обучение.
  • Декоррелирование тем.
  • Разреживание для отбора тем.

Особенности реализации ЕМ-алгоритма для ARTM.

  • Улучшение сходимости несмещёнными оценками.
  • Замена логарифма в функции потерь.
  • Матричная запись ЕМ-алгоритма.
  • Подбор коэффициентов регуляризации. Траектория регуляризации.
  • Относительные коэффициенты регуляризации.
  • Библиотеки BigARTM и TopicNet.

Эксперименты с регуляризацией.

  • Производительность BigARTM
  • Оценивание качества: перплексия, когерентность, лексическое ядро
  • Регуляризаторы сглаживания, разреживания, декоррелирования и отбора тем.
  • Комбинирование регуляризаторов, эмпирические рекомендации.
  • Эксперименты с отбором тем на синтетических и реальных данных.
  • Сравнение с байесовской моделью HDP (Hierarchical Dirichlet Process).
  • Эффект отбрасывания малых, дублирующих и линейно зависимых тем.

Оценивание качества тематических моделей

Презентация: (PDF, 1,7 МБ) — обновление 30.03.2025. старая видеозапись

Измерение качества тематических моделей.

  • Правдоподобие и перплексия.
  • Интерпретируемость и когерентность. Внутритекстовая когерентность.
  • Разреженность и различность.

Проверка гипотезы условной независимости.

  • Статистики на основе KL-дивергенции и их обобщения.
  • Регуляризатор семантической однородности.
  • Применение статистических тестов условной независимости.

Проблема тематической несбалансированности в данных

  • Проблема малых тем и тем-дубликатов
  • Тематическая несбалансированность как основная причина неинтерпретируемости тем
  • Эксперименты с регуляризаторами отбора тем и декоррелирования
  • Регуляризатор семантической однородности
  • Подходы к балансировке тем

Тематический информационный поиск

Презентация: (PDF, 3,7 МБ) — обновление 24.03.2025. старая видеозапись

Мультимодальные тематические модели.

  • Примеры модальностей.
  • Мультимодальный ARTM и регуляризованный ЕМ-алгоритм.

Иерархические тематические модели.

  • Иерархии тем. Послойное построение иерархии.
  • Регуляризаторы для разделения тем на подтемы.
  • Псевдодокументы родительских тем.
  • Модальность родительских тем.

Эксперименты с тематическим поиском.

  • Методика измерения качества поиска.
  • Тематическая модель для документного поиска.
  • Оптимизация гиперпараметров.

BigARTM и базовые инструменты

Мурат Апишев. Презентация: (zip, 0,6 МБ) — обновление 17.02.2017. Видеозапись

Предварительная обработка текстов

  • Парсинг «сырых» данных.
  • Токенизация, стемминг и лемматизация.
  • Выделение энграмм.
  • Законы Ципфа и Хипса. Фильтрация словаря коллекции. Удаление стоп-слов.

Библиотека BigARTM

  • Методологические рекоммендации по проведению экспериментов.
  • Установка BigARTM.
  • Формат и импорт входных данных.
  • Обучение простой модели (без регуляризации): создание, инициализация, настройка и оценивание модели.
  • Инструмент визуализации тематических моделей VisARTM. Основные возможности, демонстрация работы.

Дополнительный материал:

  • Презентация: (PDF, 1,5 МБ) — обновление 17.03.2017.
  • Видео — обновление 22.03.2017.
  • Воркшоп по BigARTM на DataFest'4. Видео.

Проект «Мастерская знаний»

Презентация: (PNG, 8,1 МБ) — обновление 3.03.2025.

Проект «Мастерская знаний»

  • Цели, задачи, концепция проекта. Тематические подборки научных текстов.
  • Модель векторизации текста для поиска и рекомендаций научных статей.
  • Основные сервисы «Мастерской знаний».

Место тематического моделирования в «Мастерской знаний»

  • Сервис тематизации подборки.
  • Сервисы выявления научных трендов и построения хронологических карт.
  • Вспомогательные функции в сервисе полуавтоматической суммаризации.

Карты знаний

  • Задачи иерархической суммаризации одной статьи, подборки статей.
  • Принципы построения интеллект-карт и карт знаний.
  • Что такое «тема»? Отличия тематизации и картирования.

Мультимодальные тематические модели

Презентация: (PDF, 2,8 МБ) — обновление 7.04.2025. старая видеозапись

Мультиязычные тематические модели.

  • Параллельные и сравнимые коллекции.
  • Регуляризаторы для учёта двуязычных словарей.
  • Кросс-язычный информационный поиск.

Трёхматричные модели.

  • Модели трёхматричных разложений. Понятие порождающей модальности.
  • Автор-тематическая модель (author-topic model).
  • Модель для выделения поведений объектов в видеопотоке.

Тематические модели транзакционных данных.

  • Примеры транзакционных данных в рекомендательных системах, социальных и рекламных сетях.
  • Гиперграфовая модель ARTM. Теорема о необходимом условии максимума регуляризованного правдоподобия.
  • Транзакционные данные в рекомендательных системах. Симметризованная гиперграфовая модель ARTM.
  • Гиперграфовые тематические модели языка. Тематическая модель предложений и сегментоидов.
  • Анализ транзакционных данных для выявления паттернов экономического поведения клиентов банка. Видео.
  • Анализ банковских транзакционных данных для выявления видов деятельности компаний.

Анализ зависимостей

Презентация: (PDF, 2,5 МБ) — обновление 14.04.2025. старая видеозапись

Зависимости, корреляции, связи.

  • Тематические модели классификации и регрессии.
  • Модель коррелированных тем CTM (Correlated Topic Model).
  • Регуляризаторы гиперссылок и цитирования. Выявление тематических влияний в научных публикациях.

Время и пространство.

  • Регуляризаторы времени.
  • Обнаружение и отслеживание тем.
  • Гео-пространственные модели.

Социальные сети.

  • Сфокусированный поиск в социальных медиа (пример: поиск этно-релевантного контента).
  • Выявление тематических сообществ. Регуляризаторы для направленных и ненаправленных связей.
  • Регуляризаторы для выявления социальных ролей пользователей.

Именование и суммаризация тем

Презентация: (PDF, 2,9 МБ) — обновление 28.04.2025. старая видеозапись

Методы суммаризации текстов.

  • Задачи автоматической суммаризации текстов. Подходы к суммаризации: extractive и abstractive.
  • Оценивание и отбор предложений для суммаризации. Релаксационный метод для многокритериальной дискретной оптимизации.
  • Тематическая модель предложений для суммаризации.
  • Критерии качества суммаризации. Метрики ROUGE, BLUE.

Автоматическое именование тем (topic labeling).

  • Формирование названий-кандидатов.
  • Релевантность, покрытие, различность.
  • Оценивание качества именования тем.

Задача суммаризации темы

  • Задача ранжирования документов
  • Задача фильтрации репрезентативных релевантных фраз.
  • Задача генерации связного текста

Проект «Тематизатор»

Презентация: (PDF, 6,7 МБ) — обновление 21.04.2025. Видеозапись

Визуализация тематических моделей

  • Концепция distant reading.
  • Карты знаний, иерархии, взаимосвязи, динамика, сегментация.
  • Спектр тем.
  • Визуализация матричного разложения.

Примеры прикладных задач

  • Поиск этно-релевантных тем в социальных сетях.
  • Анализ программ развития российских вузов.
  • Поиск и рубрикация научных статей на 100 языках.
  • Проекты Школы Прикладного Анализа Данных.

Анализ требований к «Тематизатору»

  • Функциональные требования.
  • Требования к интерпретируемости.
  • Основной пользовательский сценарий: Загрузка, Предобработка, Моделирование, Визуализация, Коррекция.
  • Этапизация работ.

Тематические модели сочетаемости слов

Презентация: (PDF, 1,4 МБ) — обновление 5.05.2025. старая видеозапись и ещё одна старая видеозапись

Мультиграммные модели и выделение терминов.

  • Алгоритм TopMine для быстрого поиска частых фраз. Критерии выделения коллокаций.
  • Синтаксический разбор. Нейросетевые синтаксические анализаторы SyntaxNet, UDpipe.
  • Критерии тематичности фраз.
  • Комбинирование синтаксической, статистической и тематической фильтрации фраз.

Тематические модели дистрибутивной семантики.

  • Дистрибутивная гипотеза. Модели CBOW и SGNS в программе word2vec.
  • Модель битермов BTM (Biterm Topic Model) для тематизации коллекций коротких текстов.
  • Модели WNTM (Word Network Topic Model) и WTM (Word Topic Model). Связь с моделью word2vec.

Позиционный регуляризатор в ARTM.

  • Гипотеза о сегментной структуре текста.
  • Регуляризация и пост-обработка Е-шага. Формулы М-шага.
  • Примеры регуляризаторов Е-шага. Разреживание распределения p(t|d,w). Сглаживание тематики слов по контексту.

Дополнительный материал:

  • Потапенко А. А. Векторные представления слов и документов. DataFest'4. Видео.

Байесовское обучение модели LDA

Презентация: (PDF, 2,1 МБ) — обновление 11.05.2025. старая видеозапись

Классические модели PLSA, LDA.

  • Модель PLSA.
  • Модель LDA. Распределение Дирихле и его свойства.
  • Максимизация апостериорной вероятности для модели LDA.

Вариационный байесовский вывод.

Сэмплирование Гиббса.

Замечания о байесовском подходе.

  • Оптимизация гиперпараметров в LDA.
  • Графическая нотация (plate notation). Stop using plate notation.
  • Сравнение байесовского подхода и ARTM.
  • Как читать статьи по байесовским моделям и строить эквивалентные ARTM-модели.


Отчетность по курсу

Условием сдачи курса является выполнение индивидуальных практических заданий.

Рекомендуемая структура отчёта об исследовании:

  • Постановка задачи: неформальное описание, ДНК (дано–найти–критерий), структура данных
  • Описание простого решения baseline
  • Описание основного решения и его вариантов
  • Описание набора данных и методики экспериментов
  • Результаты экспериментов по подбору гиперпараметров основного решения
  • Результаты экспериментов по сравнению основного решения с baseline
  • Примеры визуализации модели
  • Выводы: что работает, что не работает, инсайты
  • Ссылка на код

Примеры отчётов:

Литература

  1. Воронцов К. В. Вероятностное тематическое моделирование: теория регуляризации ARTM и библиотека с открытым кодом BigARTM. 2025.
  2. Xiaobao Wu, Thong Nguyen, Anh Tuan Luu. A Survey on Neural Topic Models: Methods, Applications, and Challenges. 2023.
  3. Rob Churchill, Lisa Singh. The Evolution of Topic Modeling. 2022.
  4. He Zhao, Dinh Phung, Viet Huynh, Yuan Jin, Lan Du, Wray Buntine. Topic Modelling Meets Deep Neural Networks: A Survey. 2021.
  5. Hamed Jelodar, Yongli Wang, Chi Yuan, Xia Feng. Latent Dirichlet Allocation (LDA) and Topic modeling: models, applications, a survey. 2017.
  6. Hofmann T. Probabilistic latent semantic indexing // Proceedings of the 22nd annual international ACM SIGIR conference on Research and development in information retrieval. — New York, NY, USA: ACM, 1999. — Pp. 50–57.
  7. Blei D. M., Ng A. Y., Jordan M. I. Latent Dirichlet allocation // Journal of Machine Learning Research. — 2003. — Vol. 3. — Pp. 993–1022.
  8. Asuncion A., Welling M., Smyth P., Teh Y. W. On smoothing and inference for topic models // Proceedings of the International Conference on Uncertainty in Artificial Intelligence. — 2009.

Ссылки

Материалы для первого ознакомления:

Подстраницы

Вероятностные тематические модели (курс лекций, К.В.Воронцов)/2015Вероятностные тематические модели (курс лекций, К.В.Воронцов)/2016Вероятностные тематические модели (курс лекций, К.В.Воронцов)/2017
Вероятностные тематические модели (курс лекций, К.В.Воронцов)/2018Вероятностные тематические модели (курс лекций, К.В.Воронцов)/2019, ВМКВероятностные тематические модели (курс лекций, К.В.Воронцов)/2020
Вероятностные тематические модели (курс лекций, К.В.Воронцов)/2021Вероятностные тематические модели (курс лекций, К.В.Воронцов)/2024
Личные инструменты