Вероятностные тематические модели (курс лекций, К.В.Воронцов)

Материал из MachineLearning.

(Различия между версиями)
Перейти к: навигация, поиск
(Лекция 4, план лекции 5)
Текущая версия (17:36, 14 сентября 2025) (править) (отменить)
(Оценивание качества тематических моделей)
 
(294 промежуточные версии не показаны)
Строка 1: Строка 1:
{{TOCright}}
{{TOCright}}
-
Спецкурс читается студентам 2—5 курсов на кафедре «[[Математические методы прогнозирования (кафедра ВМиК МГУ)|Математические методы прогнозирования]]» [[ВМиК]] [[МГУ]] с 2013 года.
+
Спецкурс читается студентам 2—5 курсов на кафедре «[[Математические методы прогнозирования (кафедра ВМиК МГУ)|Математические методы прогнозирования]]» [[ВМиК]] [[МГУ]] с 2013 года и студентам 6 курса на кафедре «[[Интеллектуальные системы (кафедра МФТИ)|Интеллектуальные системы]]» [[ФУПМ]] [[МФТИ]] с 2019 года.
-
В спецкурсе изучается вероятностное тематическое моделирование (topic modeling) коллекций текстовых документов. Развивается многокритериальный подход к решению некорректно поставленной задачи стохастического матричного разложения — [[аддитивная регуляризация тематических моделей]]. Рассматриваются свойства интерпретируемости, устойчивости и полноты тематических моделей, а также способы их измерения. Рассматриваются прикладные задачи классификации и категоризации текстов, информационного поиска, персонализации и рекомендательных систем. Рассматриваются задачи анализа и классификации символьных последовательностей неязыковой природы, в частности, аминокислотных и нуклеотидных последовательностей, дискретизированных биомедицинских сигналов. Предполагается проведение студентами численных экспериментов на модельных и реальных данных.
+
В спецкурсе изучается вероятностное [[тематическое моделирование]] (topic modeling) коллекций текстовых документов. Тематическая модель определяет, какие темы содержатся в большой текстовой коллекции, и к каким темам относится каждый документ. Тематические модели позволяют искать тексты по смыслу, а не по ключевым словам, и создавать информационно-поисковые системы нового поколения, основанные на парадигме семантического разведочного поиска (exploratory search). Рассматриваются тематические модели для классификации, категоризации, сегментации, суммаризации текстов естественного языка, а также для рекомендательных систем, анализа банковских транзакционных данных, анализа биомедицинских сигналов. В спецкурсе развивается многокритериальный подход к построению моделей с заданными свойствами — [[аддитивная регуляризация тематических моделей]] (АРТМ). Он основан на регуляризации некорректно поставленных задач стохастического матричного разложения. Особое внимание уделяется методам лингвистической регуляризации для моделирования связности текста. Предполагается проведение студентами численных экспериментов на модельных и реальных данных с помощью библиотеки тематического моделирования [[BigARTM]].
От студентов требуются знания курсов линейной алгебры, математического анализа, теории вероятностей. Знание математической статистики, методов оптимизации, машинного обучения, языков программирования Python и С++ желательно, но не обязательно.
От студентов требуются знания курсов линейной алгебры, математического анализа, теории вероятностей. Знание математической статистики, методов оптимизации, машинного обучения, языков программирования Python и С++ желательно, но не обязательно.
-
Условием сдачи спецкурса является выполнение индивидуальных практических заданий.
+
Краткая ссылка на эту страницу: [http://bit.ly/2EGWcjA bit.ly/2EGWcjA].
-
== Программа курса 2016 ==
+
'''Основной материал:'''
-
* Файл с описанием заданий: [[Media:voron-2016-task-PTM.pdf|voron-2016-task-PTM.pdf]]
+
* ''Воронцов К. В.'' [[Media:voron17survey-artm.pdf|Вероятностное тематическое моделирование: теория регуляризации ARTM и библиотека с открытым кодом BigARTM]]. {{важно|— обновление 29.12.2024}}.
 +
* [https://www.youtube.com/playlist?list=PLk4h7dmY2eYE_JjvexGUS5MSozoxDFovp Видеозаписи, 2023 осень (МФТИ)].
-
=== Введение ===
+
= Программа курса =
-
Презентация: [[Media:Voron-PTM-1.pdf|(PDF, 0,6 МБ)]] {{важно|— обновление 27.02.2016}}.
+
-
* Понятие «темы», цели и задачи тематического моделирования. Основные предположения. Гипотеза «мешка слов». Методы предварительной обработки текстов.
+
-
* Вероятностное пространство. Тема как латентная (ненаблюдаемая) переменная. Гипотеза условной независимости. [[Порождающая модель]] документа как вероятностной смеси тем.
+
-
* Постановка обратной задачи восстановления параметров модели по данным.
+
-
* [[Вероятностный латентный семантический анализ]] (PLSA).
+
-
* [[Метод наибольшего правдоподобия|Принцип максимума правдоподобия]], [[Условия Каруша–Куна–Таккера]]. Униграммные модели коллекции и документа.
+
-
* Теорема о необходимых условиях максимума правдоподобия для модели PLSA.
+
-
* ЕМ-алгоритм и его элементарная интерпретация. Формула Байеса и частотные оценки условных вероятностей.
+
-
* Рациональный ЕМ-алгоритм (встраивание Е-шага внутрь М-шага).
+
-
=== Обзор задач и моделей ===
+
== Задача тематического моделирования ==
-
Презентация: [[Media:Voron-PTM-2.pdf|(PDF, 8,3 МБ)]] {{важно|— обновление 27.02.2016}}.
+
Презентация: [[Media:Voron25ptm-intro.pdf|(PDF, 1,7 МБ)]] {{важно|— обновление 11.09.2025}}.
-
* Разновидности тематических моделей.
+
[https://youtu.be/DU0AQUNW3YI?list=PLk4h7dmY2eYEnsGW3GIMvIhxPeifcQvQt старая видеозапись]
-
* Средства визуализации тематических моделей.
+
-
* Разведочный информационный поиск и требования к тематическим моделям.
+
-
* Задача поиска релевантных тем в социальных сетях.
+
-
* Применение тематического моделирования для [[Технология информационного анализа электрокардиосигналов|информационного анализа электрокардиосигналов]].
+
-
* Динамическая модель коллекции пресс-релизов.
+
-
* Проект [[BigARTM]].
+
-
* Открытые проблемы и направления исследований.
+
-
=== Модель латентного размещения Дирихле ===
+
'''Цели и задачи тематического моделирования.'''
-
Презентация: [[Media:Voron-PTM-3.pdf|(PDF, 1,9 МБ)]] {{важно|— обновление 04.03.2016}}.
+
* Понятие «темы», цели и задачи [[тематическое моделирование|тематического моделирования]].
-
* Задача тематического моделирования как некорректно поставленная задача стохастического матричного разложения.
+
* Вероятностная модель порождения текста.
-
* [[Латентное размещение Дирихле]] (LDA). Некоторые свойства [[Распределение Дирихле|распределения Дирихле]].
+
* [[EM-алгоритм]] и его элементарная интерпретация. Формула Байеса и частотные оценки условных вероятностей.
-
* Теорема о необходимом условии максимума апостериорной вероятности для LDA.
+
* [[Метод наибольшего правдоподобия|Принцип максимума правдоподобия]].
-
* Сравнение EM-алгоритма для LDA и PLSA.
+
-
* Алгоритм сэмплирования Гиббса.
+
-
* Модель SWB с фоном и шумом. Робастная тематическая модель.
+
-
* Модель LDA не снижает переобучение, а лишь точнее описывает вероятности редких слов.
+
-
* Способы измерения расстояния между дискретными распределениями. [[Дивергенция Кульбака-Лейблера]].
+
-
* Эксперименты на синтетических данных: демонстрация неустойчивости PLSA и LDA.
+
-
* Эксперименты по неустойчивости LDA на текстовых коллекциях социальных сетей.
+
-
=== Аддитивная регуляризация тематических моделей ===
+
'''Аддитивная регуляризация тематических моделей.'''
-
Презентация: [[Media:Voron-PTM-4.pdf|(PDF, 1,2 МБ)]] {{важно|— обновление 6.03.2016}}.
+
* Понятие некорректно поставленной задачи по Адамару. Регуляризация.
-
* [[Аддитивная регуляризация тематических моделей]]. Линейные композиции регуляризаторов.
+
* Лемма о максимизации на единичных симплексах. [[Условия Каруша–Куна–Таккера]].
-
* Теорема о необходимом условии максимума регуляризованного правдоподобия для ARTM.
+
* Теорема о необходимом условии максимума регуляризованного правдоподобия для ARTM.
-
* Онлайновый регуляризованный EM-алгоритм. Разделение коллекции на пачки документов.
+
* Классические тематические модели [[Вероятностный латентный семантический анализ|PLSA]] и [[Латентное размещение Дирихле|LDA]] как частные случаи ARTM.
-
* Регуляризаторы сглаживания и разреживания. Частичное обучение как разновидность сглаживания.
+
-
* Разделение тем на предметные и фоновые. Автоматическое выделение стоп-слов.
+
-
* Регуляризатор декоррелирования тем.
+
-
* Регуляризатор отбора тем. Эффект отбрасывания малых, дублирующих и линейно зависимых тем. Сравнение с байесовской моделью HDP (Hierarchical Dirichlet Process).
+
-
* Критерии качества тематических моделей: перплексия, когерентность, чистота и контрастность тем. Эксперименты с композициями разреживания, сглаживания, декоррелирования и отбора тем.
+
-
=== Мультимодальные тематические модели ===
+
'''Практика тематического моделирования.'''
-
Презентация: [[Media:Voron-PTM-5.pdf|(PDF, Х,Х МБ)]] {{важно|— обновление ХХ.ХХ.2016}}.
+
* Проект с открытым кодом BigARTM.
-
* Виды модальностей и примеры прикладных задач.
+
* Этапы решения практических задач.
-
* Теорема о необходимом условии максимума регуляризованного правдоподобия для мультимодальной ARTM.
+
* Методы предварительной обработки текста.
-
* Тематическая модель классификации. Пример: [[Технология информационного анализа электрокардиосигналов]].
+
* Датасеты и практические задания по курсу.
-
* Мультиязычные тематические модели. Параллельные и сравнимые коллекции. Регуляризаторы для учёта двуязычных словарей.
+
-
* Модели многоматричных разложений. Понятие порождающей модальности.
+
-
* Автор-тематическая модель (author-topic model).
+
-
* Тематическая модель текста и изображений. Задача аннотирования изображений.
+
-
* Модель для выделения поведений объектов в видеопотоке.
+
-
* Гиперграфовая модель. Примеры транзакционных данных в социальных и рекламных сетях.
+
-
* Теорема о необходимом условии максимума регуляризованного правдоподобия для гиперграфовой ARTM.
+
-
<!---
+
== Моделирование локального контекста ==
-
'''Способы формирования начальных приближений.'''
+
Презентация: [[Media:Voron25ptm-local.pdf|(PDF,&nbsp;3,2&nbsp;МБ)]] {{важно|— обновление 14.09.2025}}.
-
* Случайная инициализация.
+
[https://youtu.be/Xe36kQPlbHY?list=PLk4h7dmY2eYEnsGW3GIMvIhxPeifcQvQt старая видеозапись]
-
* Инициализация по документам.
+
-
* Контекстная документная кластеризация.
+
-
* Поиск якорных слов. Алгоритм Ароры.
+
-
'''Ковариационные регуляризаторы.'''
+
'''Онлайновый ЕМ-алгоритм.'''
-
* Дековариация тем.
+
* Рациональный ЕМ-алгоритм (встраивание Е-шага внутрь М-шага).
-
* Тематические модели цитирования.
+
* Онлайновый EM-алгоритм для ARTM.
-
* Задача выявления корреляций между темами, модель CTM.
+
* Пакетный онлайновый регуляризованный EM-алгоритм для ARTM.
-
* Оценивание параметров (матрицы ковариаций) в модели CTM.
+
-
'''Регуляризаторы для классификации и регрессии.'''
+
'''Линейная тематизация текста.'''
-
* Задачи регрессии на текстах. Примеры. Регуляризатор. Формула М-шага.
+
* Линейная тематизация текста за один проход без матрицы <tex>\Theta</tex>.
-
* Задачи классификации текстов. Примеры. Регуляризатор. Формула М-шага.
+
* Локализация E-шага. Линейная тематизация. Коэффициенты внимания. Attentive ARTM.
 +
* Двунаправленная тематическая модель контекста.
 +
* Онлайновый EM-алгоритм с однопроходным локализованным E-шагом.
-
===Оценивание качества тематических моделей===
+
'''Аналогия с нейросетевыми моделями языка.'''
-
* Внутренние и внешние критерии качества.
+
* Свёрточная нейросеть GCNN (Gated Convolutional Network)
-
''' Перплексия и правдоподобие. '''
+
* Модель само-внимания (self-attention) Query-Key-Value.
-
* Интерпретация перплекcии.
+
* Трансформер и онлайновый EM-алгоритм с многопроходным локализованным E-шагом.
-
* Перплексия контрольной коллекции. Проблема новых слов в контрольной коллекции.
+
* Нейросетевая тематическая модель Contextual-Top2Vec.
-
* Проблема сравнения моделей с разными словарями. Относительная перплексия.
+
-
''' Оценивание качества темы.'''
+
-
* Лексическое ядро темы: множество типичных терминов темы.
+
-
* Чистота и контрастность темы
+
-
* Документное ядро темы: множество типичных документов темы.
+
-
* Однородность темы: распределение расстояний между p(w|t) и p(w|t,d).
+
-
* Конфликтность темы: близость темы к другим темам.
+
-
'''Статистические тесты условной независимости.'''
+
== Реализация ЕМ-алгоритма и комбинирование регуляризаторов ==
-
* Методология проверки статистических гипотез. Критерий согласия хи-квадрат Пирсона.
+
Презентация: [[Media:Voron25ptm-regular.pdf|(PDF,&nbsp;1,4&nbsp;МБ)]] {{важно|— обновление 14.09.2025}}.
-
* Проблема разреженности распределения. Эксперименты, показывающие неадекватность асимптотического распределения статистики хи-квадрат.
+
[https://youtu.be/mUMfoBlslQE?list=PLk4h7dmY2eYEnsGW3GIMvIhxPeifcQvQt старая видеозапись]
-
* Статистики модифицированного хи-квадрат, Кульбака-Лейблера, Хеллингера.
+
-
* Обобщённое семейство статистик Кресси-Рида.
+
-
* Эмпирическое оценивание квантилей распределения статистики Кресси-Рида.
+
-
* Применения теста условной независимости для поиска плохо смоделированных тем и документов, терминов. Поиск тем для расщепления.
+
-
'''Оценивание интерпретируемости тем.'''
+
'''Часто используемые регуляризаторы.'''
-
* Экспертное оценивание интерпретируемости.
+
* Сглаживание и разреживание.
-
* Асессорская разметка терминов и документов, релевантных теме.
+
* Частичное обучение.
-
* Метод интрузий.
+
* Декоррелирование тем.
-
* Радикальное улучшение интерпретируемости в n-граммных тематических моделях.
+
* Разреживание для отбора тем.
-
'''Когерентность.'''
+
'''Особенности реализации ЕМ-алгоритма для ARTM.'''
-
* Определение когерентности.
+
* Улучшение сходимости несмещёнными оценками.
-
* Эксперименты, показывающие связь когерентности и интерпретируемости.
+
* Замена логарифма в функции потерь.
-
* Способы оценивания совместной встречаемости слов.
+
* Матричная запись ЕМ-алгоритма.
 +
* Подбор коэффициентов регуляризации. Траектория регуляризации.
 +
* Относительные коэффициенты регуляризации.
 +
* Библиотеки BigARTM и TopicNet.
-
'''Критерии качества классификации и ранжирования.'''
+
'''Эксперименты с регуляризацией.'''
-
* Полнота, точность и F-мера в задачах классификации и ранжирования.
+
* Производительность BigARTM
-
* Критерии качества ранжирования: MAP, DCG, NDCG.
+
* Оценивание качества: перплексия, когерентность, лексическое ядро
-
* Оценка качества тематического поиска документов по их длинным фрагментам.
+
* Регуляризаторы сглаживания, разреживания, декоррелирования и отбора тем.
 +
* Комбинирование регуляризаторов, эмпирические рекомендации.
 +
* Эксперименты с отбором тем на синтетических и реальных данных.
 +
* Сравнение с байесовской моделью HDP (Hierarchical Dirichlet Process).
 +
* Эффект отбрасывания малых, дублирующих и линейно зависимых тем.
 +
== Оценивание качества тематических моделей ==
 +
Презентация: [[Media:Voron24ptm-quality.pdf|(PDF,&nbsp;1,7&nbsp;МБ)]] {{важно|— обновление 30.03.2025}}.
 +
[https://youtu.be/OoIetK1pTUA?list=PLk4h7dmY2eYEnsGW3GIMvIhxPeifcQvQt старая видеозапись]
 +
'''Измерение качества тематических моделей.'''
 +
* Правдоподобие и перплексия.
 +
* Интерпретируемость и когерентность. Внутритекстовая когерентность.
 +
* Разреженность и различность.
-
'''Суммаризация темы.'''
+
'''Проверка гипотезы условной независимости.'''
-
* Проблема визуализации тем.
+
* Статистики на основе KL-дивергенции и их обобщения.
-
* Выделение тематичных слов и предложений.
+
* Регуляризатор семантической однородности.
-
* Кластеризация тематичных предложений.
+
* Применение статистических тестов условной независимости.
-
* Ранжирование тематичных предложений.
+
-
* Асессорская разметка предложений, релевантных теме.
+
-
* Задача автоматического именования темы.
+
-
--->
+
-
== Программа курса 2015 ==
+
'''Проблема тематической несбалансированности в данных'''
-
* Файл с описанием заданий: [[Media:voron-2014-task-PTM.pdf|voron-2015-task-PTM.pdf]]
+
* Проблема малых тем и тем-дубликатов
 +
* Тематическая несбалансированность как основная причина неинтерпретируемости тем
 +
* Эксперименты с регуляризаторами отбора тем и декоррелирования
 +
* Регуляризатор семантической однородности
 +
* Подходы к балансировке тем
-
=== Задачи анализа текстов и вероятностные модели ===
+
== Тематический информационный поиск ==
 +
Презентация: [[Media:Voron24ptm-exp.pdf|(PDF,&nbsp;3,7&nbsp;МБ)]] {{важно|— обновление 24.03.2025}}.
 +
[https://youtu.be/2SkbbDYcBUQ?list=PLk4h7dmY2eYEnsGW3GIMvIhxPeifcQvQt старая видеозапись]
-
'''Задачи классификации текстов.'''
+
'''Мультимодальные тематические модели.'''
-
* Коллекция текстовых документов. Векторное представление документа.
+
* Примеры модальностей.
-
* Эмпирические законы Ципфа, Ципфа-Мандельброта, Хипса.
+
* Мультимодальный ARTM и регуляризованный ЕМ-алгоритм.
-
* Постановка задачи классификации текстов. Объекты, признаки, классы, обучающая выборка.
+
-
* Линейный классификатор. Наивный байесовский классификатор.
+
-
* Задача распознавания языка текста.
+
-
* Задача распознавание жанра текста. Распознавание научных текстов. Примеры признаков.
+
-
* Задача категоризации текстов, сведение к последовательности задач классификации.
+
-
* Задача анализа тональности.
+
-
'''Задачи предварительной обработки текстов.'''
+
'''Иерархические тематические модели.'''
-
* Очистка: удаление номеров страниц (колонтитулов), переносов, опечаток, оглавлений, таблиц, рисунков, нетекстовой информации.
+
* Иерархии тем. Послойное построение иерархии.
-
* Лемматизация и стемминг. Сравнение готовых инструментальных средств.
+
* Регуляризаторы для разделения тем на подтемы.
-
* Выделение и удаление стоп-слов и редких слов.
+
* Псевдодокументы родительских тем.
 +
* Модальность родительских тем.
-
'''Задачи информационного поиска.'''
+
'''Эксперименты с тематическим поиском.'''
-
* Задача поиска документов по запросу. Инвертированный индекс.
+
* Методика измерения качества поиска.
-
* Меры сходства векторов частот. Косинусная мера сходства. Расстояние Хеллингера.
+
* Тематическая модель для документного поиска.
-
* Дивергенция Кульбака-Леблера и её свойства. Дивергенция Кресси-Рида.
+
* Оптимизация гиперпараметров.
-
* Критерий текстовой релевантности TF-IDF. Вероятностная модель и вывод формулы TF-IDF.
+
<!---
-
* Задача ранжирования. Примеры признаков. Формирование асессорских обучающих выборок.
+
'''Проект «Мастерская знаний»'''
 +
* Поисково-рекомендательная система SciSearch.ru
 +
* Векторный поиск для формирования тематических подборок
 +
* Требования к тематическим моделям для научного информационного поиска--->
-
'''Униграммная модель документов и коллекции.'''
+
== BigARTM и базовые инструменты ==
-
* Вероятностное пространство. Гипотезы «мешка слов» и «мешка документов». Текст как простая выборка, порождаемая вероятностным распределением. Векторное представление документа как эмпирическое распределение.
+
''Мурат Апишев''.
-
* Понятие параметрической порождающей модели. Принцип максимума правдоподобия.
+
Презентация: [[Media:Base_instruments.zip‎|(zip,&nbsp;0,6&nbsp;МБ)]] {{важно|— обновление 17.02.2017}}.
-
* Униграммная модель документов и коллекции.
+
[https://youtu.be/AIN00vWOJGw Видеозапись]
-
* ''Ликбез.'' Теорема Куна-Таккера.
+
-
* Аналитическое решение задачи о стационарной точке функции Лагранжа. Частотные оценки условных вероятностей.
+
-
'''Литература:''' [Маннинг 2011].
+
'''Предварительная обработка текстов'''
 +
* Парсинг «сырых» данных.
 +
* Токенизация, стемминг и лемматизация.
 +
* Выделение энграмм.
 +
* Законы Ципфа и Хипса. Фильтрация словаря коллекции. Удаление стоп-слов.
-
=== Вероятностный латентный семантический анализ ===
+
'''Библиотека BigARTM'''
-
* ''Напоминания.'' Коллекция текстовых документов. Векторное представление документа. Задачи информационного поиска и классификации текстов.
+
* Методологические рекоммендации по проведению экспериментов.
 +
* Установка [[BigARTM]].
 +
* Формат и импорт входных данных.
 +
* Обучение простой модели (без регуляризации): создание, инициализация, настройка и оценивание модели.
 +
* Инструмент визуализации тематических моделей VisARTM. Основные возможности, демонстрация работы.
-
'''Мотивации вероятностного тематического моделирования
+
'''Дополнительный материал:'''
-
* Идея понижения размерности: переход от вектора (терминов) к вектору тем.
+
* Презентация: [[Media:VoronApishev17ptm5.pdf|(PDF,&nbsp;1,5&nbsp;МБ)]] {{важно|— обновление 17.03.2017}}.
-
* Цели тематического моделирования: разведочный поиск научной информации, навигация и систематизация, агрегирование новостных потоков, классификация и категоризация текстов, обход проблем синонимии и омонимии.
+
* [https://www.youtube.com/watch?v=2LEQuLRxaIY&t=1s '''Видео'''] {{важно|— обновление 22.03.2017}}.
 +
* Воркшоп по BigARTM на DataFest'4. [https://www.youtube.com/watch?v=oQcHEm2-7PM '''Видео'''].
-
'''Задача тематического моделирования.'''
+
== Проект «Мастерская знаний» ==
-
* Вероятностное пространство. Тема как латентная (ненаблюдаемая) переменная. Гипотеза условной независимости. Порождающая модель документа как вероятностной смеси тем.
+
Презентация: [[Media:Voron25ptm-kf.png|(PNG,&nbsp;8,1&nbsp;МБ)]] {{важно|— обновление 3.03.2025}}.
-
* Постановка обратной задачи восстановления параметров модели по данным.
+
-
'''Вероятностный латентный семантический анализ (PLSA).'''
+
'''Проект «Мастерская знаний»'''
-
* Принцип максимума правдоподобия, аналитическое решение задачи о стационарной точке функции Лагранжа, формулы M-шага.
+
* Цели, задачи, концепция проекта. Тематические подборки научных текстов.
-
* Элементарная интерпретация ЕМ-алгоритма: Е-шаг как формула Байеса для апостериорной вероятности темы, М-шаг как частотные оценки условных вероятностей.
+
* Модель векторизации текста для поиска и рекомендаций научных статей.
-
* Рациональный ЕМ-алгоритм (встраивание Е-шага внутрь М-шага).
+
* Основные сервисы «Мастерской знаний».
-
'''Онлайновый ЕМ-алгоритм (OEM).'''
+
'''Место тематического моделирования в «Мастерской знаний»'''
-
* Проблема больших данных.
+
* Сервис тематизации подборки.
-
* Эвристика разделения М-шага.
+
* Сервисы выявления научных трендов и построения хронологических карт.
-
* Эвристика разделения коллекции на пачки документов.
+
* Вспомогательные функции в сервисе полуавтоматической суммаризации.
-
* Добавление новых документов (folding-in).
+
-
'''Проведение экспериментов на модельных данных.'''
+
'''Карты знаний'''
-
* Процесс порождения терминов в документе. Генератор модельных (синтетических) данных. Генерация случайной величины из заданного дискретного распределения.
+
* Задачи иерархической суммаризации одной статьи, подборки статей.
-
* Распределение Дирихле. Генерация разреженных и сглаженных векторов дискретных распределений из распределения Дирихле.
+
* Принципы построения интеллект-карт и карт знаний.
-
* Оценивание точности восстановления модельных данных. Расстояние между дискретными распределениями. Проблема перестановки тем, венгерский алгоритм.
+
* Что такое «тема»? Отличия тематизации и картирования.
-
* Проблема неединственности и неустойчивости матричного разложения. Экспериментальное оценивание устойчивости решения.
+
-
'''Задание 1.1'''
+
== Мультимодальные тематические модели ==
-
Обязательные пункты: 1–3 и любой из последующих.
+
Презентация: [[Media:Voron25ptm-modal.pdf|(PDF,&nbsp;2,8&nbsp;МБ)]] {{важно|— обновление 7.04.2025}}.
-
# Реализовать генератор модельных данных. Реализовать вычисление эмпирических распределений терминов тем и тем документов.
+
[https://youtu.be/AfwH0A3NJCQ?list=PLk4h7dmY2eYE_JjvexGUS5MSozoxDFovp старая видеозапись]
-
# Реализовать оценку точности восстановления с учётом перестановки тем. Вычислить оценку точности для исходных модельных распределений.
+
-
# Реализовать рациональный ЕМ-алгоритм.
+
-
# Исследовать зависимости точности модели и точности восстановления от числа итераций и от числа тем в модели (при фиксированном числе тем в исходных данных). Что происходит, когда тем больше, чем нужно? Меньше, чем нужно?
+
-
# Исследовать влияние случайного начального приближения на устойчивость решения. Построить эмпирические распределения и доверительные интервалы для расстояний Хеллингера между истинными матрицами и восстановленными.
+
-
# Исследовать влияние разреженности матриц Фи и Тета на устойчивость решения.
+
-
# Исследовать полноту решения. Сколько запусков со случайным начальным приближением необходимо сделать, чтобы найти все исходные темы? Как различность и разреженность исходных тем влияет на полноту?
+
-
'''Литература:''' [Hofmann 1999].
+
'''Мультиязычные тематические модели.'''
 +
* Параллельные и сравнимые коллекции.
 +
* Регуляризаторы для учёта двуязычных словарей.
 +
* Кросс-язычный информационный поиск.
-
===Латентное размещение Дирихле===
+
'''Трёхматричные модели.'''
-
* ''Напоминания.'' Задача тематического моделирования коллекции текстовых документов. Модель PLSA, формулы Е-шага и М-шага.
+
* Модели трёхматричных разложений. Понятие порождающей модальности.
 +
* Автор-тематическая модель (author-topic model).
 +
* Модель для выделения поведений объектов в видеопотоке.
-
'''Латентное размещение Дирихле (LDA)'''
+
'''Тематические модели транзакционных данных.'''
-
* Свойства [[Распределение Дирихле|распределения Дирихле]].
+
* Примеры транзакционных данных в рекомендательных системах, социальных и рекламных сетях.
-
* Принцип максимума апостериорной вероятности. Модифицированные формулы М-шага.
+
* Гиперграфовая модель ARTM. Теорема о необходимом условии максимума регуляризованного правдоподобия.
-
* [[Байесовский вывод]]. Свойство сопряжённости мультиномиального распределения и распределения Дирихле. Другие модифицированные формулы М-шага.
+
* Транзакционные данные в рекомендательных системах. Симметризованная гиперграфовая модель ARTM.
-
* Обзор модификаций формул М-шага.
+
* Гиперграфовые тематические модели языка. Тематическая модель предложений и сегментоидов.
-
* Методы оптимизации гиперпараметров.
+
* Анализ транзакционных данных для выявления паттернов экономического поведения клиентов банка. '''[https://youtu.be/0q5p7xP4cdA?t=15168 Видео]'''.
-
* Небайесовская интерпретация модели LDA.
+
* Анализ банковских транзакционных данных для выявления видов деятельности компаний.
-
* Сравнение LDA и PLSA. Экспериментальные факты: LDA скорее улучшает оценки редких слов, чем снижает переобучение.
+
-
'''Стохастический ЕМ-алгоритм (SEM).'''
+
== Анализ зависимостей ==
-
* Гипотеза разреженности апоcтериорного распределения тем p(t|d,w).
+
Презентация: [[Media:Voron24ptm-rel.pdf|(PDF,&nbsp;2,5&nbsp;МБ)]] {{важно|— обновление 14.04.2025}}.
-
* Эвристика сэмплирования. Алгоритм сэмплирования Гиббса.
+
[https://youtu.be/uKCMr9yK3gw?list=PLk4h7dmY2eYE_JjvexGUS5MSozoxDFovp старая видеозапись]
-
'''Робастные тематические модели.'''
+
'''Зависимости, корреляции, связи.'''
-
* Робастная модель с фоном и шумом.
+
* Тематические модели классификации и регрессии.
-
* Упрощённая робастная модель.
+
* Модель коррелированных тем CTM (Correlated Topic Model).
-
* Почему робастный PLSA лучше, чем LDA. Эффект повышения правдоподобия (перплексии) в робастных моделях с шумом.
+
* Регуляризаторы гиперссылок и цитирования. Выявление тематических влияний в научных публикациях.
-
'''Способы формирования начальных приближений.'''
+
'''Время и пространство.'''
-
* Случайная инициализация.
+
* Регуляризаторы времени.
-
* Инициализация по документам.
+
* Обнаружение и отслеживание тем.
-
* Контекстная документная кластеризация.
+
* Гео-пространственные модели.
-
* Поиск якорных слов. Алгоритм Ароры.
+
-
'''Задание 1.2'''
+
'''Социальные сети.'''
-
Обязательные пункты: 1 и любой из последующих.
+
* Сфокусированный поиск в социальных медиа (пример: поиск этно-релевантного контента).
-
# Реализовать онлайновый алгоритм OEM.
+
* Выявление тематических сообществ. Регуляризаторы для направленных и ненаправленных связей.
-
# Исследовать влияние размера первой пачки и последующих пачек на качество модели.
+
* Регуляризаторы для выявления социальных ролей пользователей.
-
# Исследовать влияние выбора числа итераций на внутреннем и внешнем циклах алгоритма OEM на качество и скорость построения модели.
+
-
# Исследовать возможность улучшения качества модели с помощью второго прохода по коллекции (без инициализации p(w|t)).
+
-
# Исследовать влияние гиперпараметров на правдоподобие модели и точность восстановления.
+
-
'''Литература:''' [Hoffman 2010], [Asuncion 2009].
+
== Именование и суммаризация тем ==
 +
Презентация: [[Media:Voron25ptm-sum.pdf|(PDF,&nbsp;2,9&nbsp;МБ)]] {{важно|— обновление 28.04.2025}}.
 +
[https://youtu.be/nShxhkPbGWY старая видеозапись]
-
===Аддитивная регуляризация тематических моделей===
+
'''Методы суммаризации текстов.'''
-
* ''Напоминания''. Вероятностная тематическая модель. Принцип максимума правдоподобия. PLSA. EM-алгоритм.
+
* Задачи автоматической суммаризации текстов. Подходы к суммаризации: extractive и abstractive.
 +
* Оценивание и отбор предложений для суммаризации. Релаксационный метод для многокритериальной дискретной оптимизации.
 +
* Тематическая модель предложений для суммаризации.
 +
* Критерии качества суммаризации. Метрики ROUGE, BLUE.
-
'''Многокритериальная регуляризация.'''
+
'''Автоматическое именование тем (topic labeling).'''
-
* Некорректность постановки задачи тематического моделирования.
+
* Формирование названий-кандидатов.
-
* [[Аддитивная регуляризация тематических моделей]].
+
* Релевантность, покрытие, различность.
-
* Вывод формулы M-шага для регуляризованного ЕМ-алгоритма.
+
* Оценивание качества именования тем.
-
* Проект [[BigARTM]].
+
-
'''Регуляризаторы сглаживания и разреживания.'''
+
'''Задача суммаризации темы'''
-
* Максимизация и минимизация KL-дивергенции.
+
* Задача ранжирования документов
-
* Альтернативный вариант разреживания через L0-регуляризацию.
+
* Задача фильтрации репрезентативных релевантных фраз.
-
* Связь разреженности и единственности неотрицательного матричного разложения.
+
* Задача генерации связного текста
-
* Разреживание предметных тем и сглаживание фоновых тем. Автоматическое выделение стоп-слов.
+
-
'''Регуляризаторы частичного обучения.'''
+
== Проект «Тематизатор» ==
-
* Частичное обучение как выборочное сглаживание.
+
Презентация: [[Media:Voron25ptm-project.pdf|(PDF,&nbsp;6,7&nbsp;МБ)]] {{важно|— обновление 21.04.2025}}.
-
* Сфокусированные тематические модели. Использование словаря для выделения предметных тем.
+
[https://youtu.be/LctW1J93lmw?list=PLk4h7dmY2eYE_JjvexGUS5MSozoxDFovp Видеозапись]
-
* Пример: выделение тематики эпидемий, этнических конфликтов.
+
-
'''Ковариационные регуляризаторы.'''
+
'''Визуализация тематических моделей'''
-
* Дековариация тем.
+
* Концепция distant reading.
-
* Тематические модели цитирования.
+
* Карты знаний, иерархии, взаимосвязи, динамика, сегментация.
-
* Задача выявления корреляций между темами, модель CTM.
+
* Спектр тем.
-
* Оценивание параметров (матрицы ковариаций) в модели CTM.
+
* Визуализация матричного разложения.
-
'''Регуляризаторы для классификации и регрессии.'''
+
'''Примеры прикладных задач'''
-
* Задачи регрессии на текстах. Примеры. Регуляризатор. Формула М-шага.
+
* Поиск этно-релевантных тем в социальных сетях.
-
* Задачи классификации текстов. Примеры. Регуляризатор. Формула М-шага.
+
* Анализ программ развития российских вузов.
 +
* Поиск и рубрикация научных статей на 100 языках.
 +
* Проекты Школы Прикладного Анализа Данных.
-
'''Задание 1.3'''
+
'''Анализ требований к «Тематизатору»'''
-
Обязательные пункты: 1 и любой из остальных.
+
* Функциональные требования.
-
# Реализовать разреживание в онлайновом алгоритме OEM.
+
* Требования к интерпретируемости.
-
# Исследовать зависимость правдоподобия модели и точности восстановления от степени разреженности исходных модельных данных.
+
* Основной пользовательский сценарий: Загрузка, Предобработка, Моделирование, Визуализация, Коррекция.
-
# Исследовать влияние разреживания на правдоподобие модели и точность восстановления. Проверить гипотезу, что если исходные данные разрежены, то разреживание существенно улучшает точность восстановления и слабо влияет на правдоподобие модели.
+
* Этапизация работ.
-
# Исследовать влияние частичной разметки на правдоподобие модели и точность восстановления. Проверить гипотезу, что небольшой доли правильно размеченных документов уже достаточно для существенного улучшения правдоподобия и устойчивости модели.
+
-
# Исследовать влияние сглаживания на правдоподобие модели и точность восстановления.
+
-
'''Литература:''' [Воронцов, 2013, 2015], [Chemudugunta, 2006].
+
== Тематические модели сочетаемости слов ==
 +
Презентация: [[Media:Voron25ptm-cooc.pdf|(PDF,&nbsp;1,4&nbsp;МБ)]] {{важно|— обновление 5.05.2025}}.
 +
[https://youtu.be/zuN5HECqv3I?list=PLk4h7dmY2eYEnsGW3GIMvIhxPeifcQvQt старая видеозапись] и ещё одна
 +
[https://youtu.be/k46UzzMSKt0?list=PLk4h7dmY2eYEnsGW3GIMvIhxPeifcQvQt&t=22 старая видеозапись]
-
===Оценивание качества тематических моделей===
+
'''Мультиграммные модели и выделение терминов.'''
 +
* Алгоритм TopMine для быстрого поиска частых фраз. Критерии выделения коллокаций.
 +
* Синтаксический разбор. Нейросетевые синтаксические анализаторы SyntaxNet, UDpipe.
 +
* Критерии тематичности фраз.
 +
* Комбинирование синтаксической, статистической и тематической фильтрации фраз.
-
'''Реальные данные.'''
+
'''Тематические модели дистрибутивной семантики.'''
-
* Текстовые коллекции, библиотеки алгоритмов, источники информации.
+
* Дистрибутивная гипотеза. Модели CBOW и SGNS в программе word2vec.
-
* Внутренние и внешние критерии качества.
+
* Модель битермов BTM (Biterm Topic Model) для тематизации коллекций коротких текстов.
-
* Дополнительные данные для построения внешних критериев качества.
+
<!--* Модель всплесков BBTM (Bursty Biterm Topic Model). -->
 +
* Модели WNTM (Word Network Topic Model) и WTM (Word Topic Model). Связь с моделью word2vec.
 +
<!--* Регуляризаторы когерентности. -->
-
'''Перплексия и правдоподобие.'''
+
'''Позиционный регуляризатор в ARTM.'''
-
* Определение и интерпретация перплекcии.
+
* Гипотеза о сегментной структуре текста.
-
* Перплексия контрольной коллекции. Проблема новых слов в контрольной коллекции.
+
* Регуляризация и пост-обработка Е-шага. Формулы М-шага.
-
* Проблема сравнения моделей с разными словарями.
+
* Примеры регуляризаторов Е-шага. Разреживание распределения p(t|d,w). Сглаживание тематики слов по контексту.
-
* Относительная перплексия.
+
-
''' Оценивание качества темы.'''
+
'''Дополнительный материал:'''
-
* Лексическое ядро темы: множество типичных терминов темы.
+
* ''Потапенко А. А.'' Векторные представления слов и документов. DataFest'4. [https://www.youtube.com/watch?v=KEXWC-ICH_Y '''Видео'''].
-
* Чистота и контрастность темы
+
-
* Документное ядро темы: множество типичных документов темы.
+
-
* Однородность темы: распределение расстояний между p(w|t) и p(w|t,d).
+
-
* Конфликтность темы: близость темы к другим темам.
+
-
'''Статистические тесты условной независимости.'''
+
== Байесовское обучение модели LDA ==
-
* Методология проверки статистических гипотез. Критерий согласия хи-квадрат Пирсона.
+
Презентация: [[Media:Voron25ptm-bayes.pdf|(PDF,&nbsp;2,1&nbsp;МБ)]] {{важно|— обновление 11.05.2025}}.
-
* Проблема разреженности распределения. Эксперименты, показывающие неадекватность асимптотического распределения статистики хи-квадрат.
+
[https://youtu.be/ZAtfN0ApQh0?list=PLk4h7dmY2eYEnsGW3GIMvIhxPeifcQvQt&t=20 старая видеозапись]
-
* Статистики модифицированного хи-квадрат, Кульбака-Лейблера, Хеллингера.
+
-
* Обобщённое семейство статистик Кресси-Рида.
+
-
* Эмпирическое оценивание квантилей распределения статистики Кресси-Рида.
+
-
* Применения теста условной независимости для поиска плохо смоделированных тем, документов, терминов. Поиск тем для расщепления.
+
-
'''Литература:''' [Newman, 2009–2011].
+
'''Классические модели PLSA, LDA.'''
 +
* Модель PLSA.
 +
* Модель LDA. Распределение Дирихле и его свойства.
 +
* Максимизация апостериорной вероятности для модели LDA.
-
===Внешние оценки качества тематических моделей===
+
'''Вариационный байесовский вывод.'''
 +
* Основная теорема вариационного байесовского вывода.
 +
* [[Вариационный байесовский вывод]] для модели LDA.
 +
* VB ЕМ-алгоритм для модели LDA.
-
'''Оценивание интерпретируемости тем.'''
+
'''Сэмплирование Гиббса.'''
-
* Экспертное оценивание интерпретируемости.
+
* Основная теорема о сэмплировании Гиббса.
-
* Асессорская разметка терминов и документов, релевантных теме.
+
* [[Сэмплирование Гиббса]] для модели LDA.
-
* Метод интрузий.
+
* GS ЕМ-алгоритм для модели LDA.
-
* Радикальное улучшение интерпретируемости в n-граммных тематических моделях.
+
-
'''Когерентность.'''
+
'''Замечания о байесовском подходе.'''
-
* Определение когерентности.
+
* Оптимизация гиперпараметров в LDA.
-
* Эксперименты, показывающие связь когерентности и интерпретируемости.
+
* Графическая нотация (plate notation). [http://zinkov.com/posts/2013-07-28-stop-using-plates Stop using plate notation].
-
* Способы оценивания совместной встречаемости слов.
+
* Сравнение байесовского подхода и ARTM.
 +
* Как читать статьи по байесовским моделям и строить эквивалентные ARTM-модели.
-
'''Суммаризация темы.'''
+
<!---
-
* Проблема визуализации тем.
+
== Теория ЕМ-алгоритма ==
-
* Выделение тематичных слов и предложений.
+
Презентация: [[Media:Voron24ptm-emlda.pdf|(PDF,&nbsp;2,0&nbsp;МБ)]] {{важно|— обновление 25.10.2024}}.
-
* Кластеризация тематичных предложений.
+
[https://youtu.be/DBF5QAFC1V0?list=PLk4h7dmY2eYEnsGW3GIMvIhxPeifcQvQt старая видеозапись]
-
* Ранжирование тематичных предложений.
+
-
* Асессорская разметка предложений, релевантных теме.
+
-
* Задача автоматического именования темы.
+
-
'''Критерии качества классификации и ранжирования.'''
+
'''Общий EM-алгоритм.'''
-
* Полнота, точность и F-мера в задачах классификации и ранжирования.
+
* EM-алгоритм для максимизации неполного правдоподобия.
-
* Критерии качества ранжирования: MAP, DCG, NDCG.
+
* Регуляризованный EM-алгоритм. Сходимость в слабом смысле.
-
* Оценка качества тематического поиска документов по их длинным фрагментам.
+
* Альтернативный вывод формул ARTM.
-
'''Задание 1.4.'''
+
'''Эксперименты с моделями PLSA, LDA.'''
-
# Применить OEM к реальным коллекциям.
+
* Проблема неустойчивости (на синтетических данных).
-
# Исследовать на реальных данных зависимость внутренних и внешних критериев качества от эвристических параметров алгоритма обучения OEM.
+
* Проблема неустойчивости (на реальных данных).
-
# В экспериментах на реальных данных построить зависимости перплексии обучающей и контрольной коллекции от числа итераций и числа тем.
+
* Проблема переобучения и робастные модели.
-
'''Литература:'''
+
== Моделирование сегментированного текста ==
 +
Презентация: [[Media:Voron24ptm-segm.pdf|(PDF,&nbsp;2,1&nbsp;МБ)]] {{важно|— обновление 21.11.2024}}.
 +
[https://youtu.be/k46UzzMSKt0?list=PLk4h7dmY2eYEnsGW3GIMvIhxPeifcQvQt&t=22 старая видеозапись]
-
===Мультимодальные регуляризованные тематические модели===
+
'''Мультиграммные модели.'''
-
* ''Напоминания''. Аддитивная регуляризация тематических моделей.
+
* Модель BigramTM.
 +
* Модель Topical N-grams (TNG).
 +
* Мультимодальная мультиграммная модель.
-
'''Мультимодальная АРТМ.'''
+
'''Тематические модели предложений.'''
-
* Виды модальностей и примеры прикладных задач.
+
* Тематическая модель предложений senLDA.
-
* Вывод формул М-шага.
+
* Модель коротких сообщений Twitter-LDA.
-
* Тематическая модель классификации. Пример: [[Технология информационного анализа электрокардиосигналов]].
+
* Сегментоиды. Лексические цепочки.
-
* Тематическая модель текста и изображений.
+
-
* Задача аннотирования изображений.
+
-
'''Мультиязычные тематические модели.'''
+
'''Тематическая сегментация текста.'''
-
* Параллельные и сравнимые коллекции.
+
* Метод TopicTiling. Критерии определения границ сегментов.
-
* Регуляризаторы для учёта двуязычных словарей.
+
* Критерии качества сегментации.
 +
* Оптимизация параметров модели TopicTiling.
 +
--->
-
'''Модели многоматричных разложений.'''
+
=Отчетность по курсу=
-
* Понятие порождающей модальности.
+
Условием сдачи курса является выполнение индивидуальных практических заданий.
-
* Вывод формул М-шага.
+
-
* Автор-тематическая модель (author-topic model).
+
-
* Модель для выделения поведений объектов в видеопотоке.
+
-
'''Гиперграфовая модель.'''
+
'''Рекомендуемая структура отчёта об исследовании:'''
-
* Примеры транзакционных данных в социальных и рекламных сетях.
+
* Постановка задачи: неформальное описание, ДНК (дано–найти–критерий), структура данных
-
* Вывод формул М-шага.
+
* Описание простого решения baseline
 +
* Описание основного решения и его вариантов
 +
* Описание набора данных и методики экспериментов
 +
* Результаты экспериментов по подбору гиперпараметров основного решения
 +
* Результаты экспериментов по сравнению основного решения с baseline
 +
* Примеры визуализации модели
 +
* Выводы: что работает, что не работает, инсайты
 +
* Ссылка на код
-
'''Литература:'''
+
'''Примеры отчётов:'''
 +
* [[Media:kibitova16ptm.pdf|Валерия Кибитова, 2016]]
 +
* [[Media:filin18ptm.pdf|Максим Филин, 2018]]
 +
* [[Media:ikonnikova18ptm.pdf|Мария Иконникова, 2018]]
-
===Определение числа тем и иерархические модели===
+
=Литература=
-
'''Регуляризатор энтропийного разреживания.'''
+
# ''Воронцов К. В.'' [[Media:voron17survey-artm.pdf|Вероятностное тематическое моделирование: теория регуляризации ARTM и библиотека с открытым кодом BigARTM]]. 2025.
-
* Регуляризатор и формула М-шага. Эффект строкового разреживания.
+
# ''Xiaobao Wu, Thong Nguyen, Anh Tuan Luu.'' [https://arxiv.org/abs/2401.15351 A Survey on Neural Topic Models: Methods, Applications, and Challenges]. 2023.
-
* Определение истинного числа тем в экспериментах с полумодельными данными.
+
# ''Rob Churchill, Lisa Singh.'' [https://dl.acm.org/doi/10.1145/3507900 The Evolution of Topic Modeling]. 2022.
-
* Гипотеза о несуществовании истинного числа тем.
+
# ''He Zhao, Dinh Phung, Viet Huynh, Yuan Jin, Lan Du, Wray Buntine.'' [https://arxiv.org/abs/2103.00498 Topic Modelling Meets Deep Neural Networks: A Survey]. 2021.
-
* Эффект отбрасывания малых, дублирующих и линейно зависимых тем.
+
# ''Hamed Jelodar, Yongli Wang, Chi Yuan, Xia Feng.'' [https://arxiv.org/ftp/arxiv/papers/1711/1711.04305.pdf Latent Dirichlet Allocation (LDA) and Topic modeling: models, applications, a survey]. 2017.
-
* Сравнение с моделью иерархических процессов Дирихле.
+
# ''Hofmann T.'' Probabilistic latent semantic indexing // Proceedings of the 22nd annual international ACM SIGIR conference on Research and development in information retrieval. — New York, NY, USA: ACM, 1999. — Pp. 50–57.
 +
# ''Blei D. M., Ng A. Y., Jordan M. I.'' Latent Dirichlet allocation // Journal of Machine Learning Research. — 2003. — Vol. 3. — Pp. 993–1022.
 +
# ''Asuncion A., Welling M., Smyth P., Teh Y. W.'' On smoothing and inference for topic models // Proceedings of the International Conference on Uncertainty in Artificial Intelligence. — 2009.
 +
<!--
 +
# ''Янина А. О., Воронцов К. В.'' [http://jmlda.org/papers/doc/2016/no2/Ianina2016Multimodal.pdf Мультимодальные тематические модели для разведочного поиска в коллективном блоге] // Машинное обучение и анализ данных. 2016. T.2. №2. С.173-186.
 +
# ''Воронцов К.В.'' Тематическое моделирование в BigARTM: теория, алгоритмы, приложения. [[Media:Voron-2015-BigARTM.pdf|Voron-2015-BigARTM.pdf]].
 +
# ''Воронцов К.В.'' Лекции по тематическому моделированию. [[Media:Voron-2013-ptm.pdf|Voron-2013-ptm.pdf]].
-
'''Тематическая модель с фиксированной иерархией.'''
+
'''Дополнительная литература'''
-
* Задачи категоризации текстов. Стандартный метод решения — сведение к последовательности задач классификации.
+
-
* Необходимость частичного обучения для задачи категоризации.
+
-
* Вероятностная формализация отношения «тема–подтема». Тождества, связывающие распределения тем и подтем
+
-
* Задача построения разреженного иерархического тематического профиля документа.
+
-
'''Послойное нисходящее построение тематической иерархии.'''
+
# Воронцов К. В., Потапенко А. А. [http://jmlda.org/papers/doc/2013/no6/Vorontsov2013TopicModeling.pdf Модификации EM-алгоритма для вероятностного тематического моделирования] // Машинное обучение и анализ данных. — 2013. — T. 1, № 6. — С. 657–686.
-
* Регуляризатор матрицы Фи.
+
# Воронцов К. В., Фрей А. И., Ромов П. А., Янина А. О., Суворова М. А., Апишев М. А. [[Media:Voron15damdid.pdf|BigARTM: библиотека с открытым кодом для тематического моделирования больших текстовых коллекций]] // Аналитика и управление данными в областях с интенсивным использованием данных. XVII Международная конференция DAMDID/RCDL’2015, Обнинск, 13-16 октября 2015.
-
* Регуляризатор матрицы Тета.
+
# Маннинг К., Рагхаван П., Шютце Х. Введение в информационный поиск. — Вильямс, 2011.
-
* Измерение и оптимизация качества иерархических моделей.
+
# Chemudugunta C., Smyth P., Steyvers M. Modeling general and specific aspects of documents with a probabilistic topic model // Advances in Neural Information Processing Systems. — MIT Press, 2006. — Vol. 19. — Pp. 241–248.
-
* Разреживание вероятностного отношения тема—подтема.
+
# Daud A., Li J., Zhou L., Muhammad F. Knowledge discovery through directed probabilistic topic models: a survey // Frontiers of Computer Science in China.— 2010.— Vol. 4, no. 2. — Pp. 280–301.
 +
# Dempster A. P., Laird N. M., Rubin D. B. Maximum likelihood from incomplete data via the EM algorithm // J. of the Royal Statistical Society, Series B. — 1977. — no. 34. — Pp. 1–38.
 +
# Hoffman M. D., Blei D. M., Bach F. R. Online Learning for Latent Dirichlet Allocation // NIPS, 2010. Pp. 856–864.
 +
# Lu Y., Mei Q., Zhai C. Investigating task performance of probabilistic topic models: an empirical study of PLSA and LDA // Information Retrieval. — 2011. — Vol.14, no.2. — Pp. 178–203.
 +
# Vorontsov K. V., Potapenko A. A. [[Media:Voron14mlj.pdf|Additive Regularization of Topic Models]] // Machine Learning. Special Issue “Data Analysis and Intelligent Optimization with Applications”: Volume 101, Issue 1 (2015), Pp. 303-323. [[Media:Voron14mlj-rus.pdf|Русский перевод]]
 +
# Vorontsov K. V., Frei O. I., Apishev M. A., Romov P. A., Suvorova M. A., Yanina A. O. [[Media:Voron15cikm-tm.pdf|Non-Bayesian Additive Regularization for Multimodal Topic Modeling of Large Collections]] // Proceedings of the 2015 Workshop on Topic Models: Post-Processing and Applications, October 19, 2015, Melbourne, Australia. ACM, New York, NY, USA. pp. 29–37.
 +
# Wallach H., Mimno D., McCallum A. Rethinking LDA: Why priors matter // Advances in Neural Information Processing Systems 22 / Ed. by Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, A. Culotta. — 2009. — Pp. 1973–1981.
 +
-->
-
'''Одновременное построение всех слоёв тематической иерархии.'''
+
= Ссылки =
 +
* [[Тематическое моделирование]]
 +
* [[Аддитивная регуляризация тематических моделей]]
 +
* [[Коллекции документов для тематического моделирования]]
 +
* [[BigARTM]]
 +
* [http://www.youtube.com/watch?v=vSzsuq7uHPE Видеозапись лекции на ТМШ, 19 июня 2015]
 +
* ''Воронцов К.В.'' [[Media:voron-2014-task-PTM.pdf|Практическое задание по тематическому моделированию, 2014.]]
-
'''Литература:''' .
+
'''Материалы для первого ознакомления:'''
 +
* ''[[Media:BigARTM-short-intro.pdf|Тематический анализ больших данных]]''. Краткое популярное введение в BigARTM.
 +
* ''[http://postnauka.ru/video/61910 Разведочный информационный поиск]''. Видеолекция на ПостНауке.
 +
* ''[https://postnauka.ru/faq/86373 Тематическое моделирование]''. FAQ на ПостНауке, совместно с Корпоративным университетом Сбербанка.
 +
* ''[https://www.youtube.com/watch?v=MhNbccnVk5Y Байесовская и классическая регуляризация в вероятностном тематическом моделировании]''. Научно-образовательный семинар «Актуальные проблемы прикладной математики» Новосибирского Государственного Университета, 19 февраля 2021. [[Media:Voron-2021-02-19.pdf|Презентация]].
 +
* ''[https://habrahabr.ru/company/yandex/blog/313340 Тематическое моделирование на пути к разведочному информационному поиску]''. Лекция на DataFest3, 10 сентября 2016. [https://www.youtube.com/watch?v=frLW8UVp_Ik&index=5&list=PLJOzdkh8T5kqfhWXhtYevTUHIvrylDLYu Видеозапись].
-
===Тематические модели, учитывающие порядок слов===
+
= Подстраницы =
 +
{{Служебная:Prefixindex/Вероятностные тематические модели (курс лекций, К.В.Воронцов)/}}
-
'''Мультиграммные модели.'''
+
[[Категория:Учебные курсы]]
-
* Задача выделения терминов как ключевых фраз (словосочетаний). Словари терминов.
+
-
* Морфологический и синтаксический анализ текста.
+
-
* Отбор фраз с подчинительными связями.
+
-
* Отбор фраз по статистическому критерию коллокации C-Value. Совмещение критериев TF-IDF и CValue.
+
-
* Отбор фраз по оценке тематичности.
+
-
* Задача сокращения словаря (vocabulary reduction) и проблема сравнения моделей с разными словарями.
+
-
'''Регуляризаторы для выделения энграмм.'''
 
-
* Биграммная тематическая модель.
 
-
'''Сегментирующие тематические модели.'''
+
<!---------------------------------------------------
-
* Позиционный регуляризатор, вывод формул М-шага.
+
-
* Пост-обработка Е-шага.
+
-
* Интерпретация текста как пучка временных рядов и задача разладки.
+
-
* Алгоритм тематической сегментации.
+
-
* Тематические модели предложений (sentence topic model).
+
-
'''Векторная модель word2vec.'''
+
'''Модели связного текста.'''
-
* Векторная модель word2vec и её интерпретация как латентной модели с матричным разложением.
+
* Контекстная документная кластеризация (CDC).
-
* Гибрид тематической модели и векторной модели word2vec.
+
* Метод лексических цепочек.
-
* Связь word2vec с регуляризатором когерентности.
+
-
* Эксперименты с гибридной моделью W2V-TM.
+
-
'''Литература:''' .
+
'''Инициализация.'''
 +
* Случайная инициализация. Инициализация по документам.
 +
* Контекстная документная кластеризация.
 +
* Поиск якорных слов. Алгоритм Ароры.
-
===Динамические и пространственные тематические модели===
+
'''Расширяемые тематические модели.'''
 +
* Пакетный ЕМ-алгоритм.
 +
* Обнаружение новых тем в потоке документов. Инициализация новых тем.
 +
* Проблемы агрегирования коллекций. Жанровая и тематическая фильтрация документов.
-
'''Тематические модели с модальностью времени.'''
+
== Анализ разнородных данных ==
-
* Регуляризатор разреживания тем в каждый момент времени.
+
Презентация: [[Media:Voron18ptm-misc.pdf|(PDF,&nbsp;1,6&nbsp;МБ)]] {{важно|— обновление 03.05.2018}}.
-
* Регуляризаторы сглаживания темы как временного ряда.
+
-
* Вывод M-шага для негладкого регуляризатора.
+
-
'''Тематические модели с модальностью геолокации.'''
+
== Примеры приложений тематического моделирования ==
-
* Тематические модели социальных сетей.
+
Презентация: [[Media:Voron17ptm11.pdf|(PDF,&nbsp;3,3&nbsp;МБ)]] {{важно|— обновление 16.05.2017}}.
-
===Траектории регуляризации===
+
'''Примеры приложений тематического моделирования.'''
 +
* Задача поиска релевантных тем в социальных сетях и новостных потоках.
 +
* Динамическая модель коллекции пресс-релизов.
 +
* Разведочный поиск в коллективном блоге.
 +
* Сценарный анализ записей разговоров контактного центра.
 +
* [[Технология информационного анализа электрокардиосигналов|Информационный анализ электрокардиосигналов]] для скрининговой диагностики.
-
'''Обучение с подкреплением'''
+
== Инициализация, траектория регуляризации, тесты адекватности ==
-
* Контекстный многорукий бандит.
+
Презентация: [[Media:Voron-PTM-10.pdf|(PDF,&nbsp;Х,Х&nbsp;МБ)]] {{важно|— обновление ХХ.ХХ.2016}}.
-
* Инкрементная регрессия.
+
-
* Регрессия с верхними доверительными границами (UCB).
+
-
'''Задача оптимизации трактории в пространстве коэффициентов регуляризации'''
+
'''Траектория регуляризации.'''
 +
* Задача оптимизации трактории в пространстве коэффициентов регуляризации.
* Относительные коэффициенты регуляризации.
* Относительные коэффициенты регуляризации.
-
* Признаковое описание контекста. Метрики качества тематической модели.
+
* Пространство коэффициентов регуляризации и пространство метрик качества. Регрессионная связь между ними. Инкрементная регрессия.
-
* Функция премии и скаляризация критериев.
+
* Подходы к скаляризации критериев.
-
* Особенности реализации обучения с подкреплением в онлайновом ЕМ-алгоритме.
+
* Обучение с подкреплением. Контекстный многорукий бандит. Верхние доверительные границы (UCB).
-
===Визуализация тематических моделей===
+
'''Тесты адекватности.'''
 +
* Статистические тесты условной независимости. Методология проверки статистических гипотез. Критерий согласия хи-квадрат Пирсона.
 +
* Проблема разреженности распределения. Эксперименты, показывающие неадекватность асимптотического распределения статистики хи-квадрат.
 +
* Статистики модифицированного хи-квадрат, Кульбака-Лейблера, Хеллингера.
 +
* Обобщённое семейство статистик Кресси-Рида.
 +
* Эмпирическое оценивание квантилей распределения статистики Кресси-Рида.
 +
* Применения теста условной независимости для поиска плохо смоделированных тем, документов, терминов. Поиск тем для расщепления.
-
'''Навигация по тематической модели.'''
+
== Обзор оценок качества тематических моделей ==
-
* Визуализатор TMVE.
+
Презентация: [[Media:Voron-PTM-11.pdf|(PDF,&nbsp;Х,Х&nbsp;МБ)]] {{важно|— обновление ХХ.ХХ.2016}}.
-
* Визуализатор Termite.
+
-
* Визуализатор для [[BigARTM]].
+
-
'''Методы визуализации.'''
+
* Внутренние и внешние критерии качества.
-
* Задача и методы многомерного шкалирования.
+
* Перплексия и правдоподобие. Интерпретация перплекcии. Перплексия контрольной коллекции. Проблема новых слов в контрольной коллекции. Проблема сравнения моделей с разными словарями. Относительная перплексия.
-
* Визуализация «дорожной карты» темы или набора тем.
+
-
* Визуализация тематических иерархий.
+
-
* Визуализация динамических моделей, метафора «реки тем».
+
-
* Визуализация тематической структуры документа.
+
-
* Визуализация модели трёх источников.
+
-
'''Средства разведочного поиска.'''
+
''' Оценивание качества темы.'''
-
* Концепция пользовательского интерфейса для разведочного поиска.
+
* Лексическое ядро темы: множество типичных терминов темы.
-
* Концепция иерархической суммаризации.
+
* Чистота и контрастность темы
 +
* Документное ядро темы: множество типичных документов темы.
 +
* Однородность темы: распределение расстояний между p(w|t) и p(w|t,d).
 +
* Конфликтность темы: близость темы к другим темам.
 +
* Интерпретируемость темы: экспертные оценки, метод интрузий, когерентность. Взрыв интерпретируемости в n-граммных моделях.
-
===Большие данные===
+
'''Устойчивость и полнота.'''
 +
* Эксперименты по оцениванию устойчивости, интерпретируемости и полноты.
 +
* Построение выпуклых оболочек тем и фильтрация зависимых тем в сериях тематических моделей.
-
'''Параллельные и распределённые алгоритмы.'''
+
'''Критерии качества классификации и ранжирования.'''
-
* Обзор подходов к распараллеливанию онлайнового EМ-алгоритма.
+
* Полнота, точность и F-мера в задачах классификации и ранжирования.
-
* Распараллеливание онлайнового EМ-алгоритма в [[BigARTM]].
+
* Критерии качества ранжирования: MAP, DCG, NDCG.
-
* Распределённое хранение коллекции.
+
* Оценка качества тематического поиска документов по их длинным фрагментам.
-
'''Обработка больших коллекций в BigARTM.'''
+
* Вывод M-шага для негладкого регуляризатора.
-
* Особенности предварительной обработки.
+
* Тематическая модель текста и изображений. Задача аннотирования изображений.
-
* Коллекция Википедии.
+
-->
-
* Коллекция arXiv.org.
+
-
* Коллекция социальной сети VK.
+
-
 
+
-
==Литература==
+
-
 
+
-
'''Основная литература'''
+
-
 
+
-
# ''Воронцов К.В.'' Тематическое моделирование в BigARTM: теория, алгоритмы, приложения. [[Media:Voron-2015-BigARTM.pdf|Voron-2015-BigARTM.pdf]].
+
-
# ''Воронцов К.В.'' Лекции по тематическому моделированию. [[Media:Voron-2013-ptm.pdf|Voron-2013-ptm.pdf]].
+
-
# ''Vorontsov K. V., Potapenko A. A.'' [[Media:Voron14mlj.pdf|Additive Regularization of Topic Models]] // Machine Learning. Special Issue “Data Analysis and Intelligent Optimization with Applications”: Volume 101, Issue 1 (2015), Pp. 303-323. [[Media:Voron14mlj-rus.pdf|Русский перевод]]
+
-
 
+
-
'''Дополнительная литература'''
+
-
 
+
-
# Воронцов К. В., Потапенко А. А. [http://jmlda.org/papers/doc/2013/no6/Vorontsov2013TopicModeling.pdf Модификации EM-алгоритма для вероятностного тематического моделирования] // Машинное обучение и анализ данных. — 2013. — T. 1, № 6. — С. 657–686.
+
-
# Воронцов К. В., Фрей А. И., Ромов П. А., Янина А. О., Суворова М. А., Апишев М. А. [[Media:Voron15damdid.pdf|BigARTM: библиотека с открытым кодом для тематического моделирования больших текстовых коллекций]] // Аналитика и управление данными в областях с интенсивным использованием данных. XVII Международная конференция DAMDID/RCDL’2015, Обнинск, 13-16 октября 2015.
+
-
# Маннинг К., Рагхаван П., Шютце Х. Введение в информационный поиск. — Вильямс, 2011.
+
-
# Asuncion A., Welling M., Smyth P., Teh Y. W. On smoothing and inference for topic models // Proceedings of the International Conference on Uncertainty in Artificial Intelligence. — 2009.
+
-
# Blei D. M., Ng A. Y., Jordan M. I. Latent Dirichlet allocation // Journal of Machine Learning Research. — 2003. — Vol. 3. — Pp. 993–1022.
+
-
# Chemudugunta C., Smyth P., Steyvers M. Modeling general and specific aspects of documents with a probabilistic topic model // Advances in Neural Information Processing Systems. — MIT Press, 2006. — Vol. 19. — Pp. 241–248.
+
-
# Daud A., Li J., Zhou L., Muhammad F. Knowledge discovery through directed probabilistic topic models: a survey // Frontiers of Computer Science in China.— 2010.— Vol. 4, no. 2. — Pp. 280–301.
+
-
# Dempster A. P., Laird N. M., Rubin D. B. Maximum likelihood from incomplete data via the EM algorithm // J. of the Royal Statistical Society, Series B. — 1977. — no. 34. — Pp. 1–38.
+
-
# Hofmann T. Probabilistic latent semantic indexing // Proceedings of the 22nd annual international ACM SIGIR conference on Research and development in information retrieval. — New York, NY, USA: ACM, 1999. — Pp. 50–57.
+
-
# Hoffman M. D., Blei D. M., Bach F. R. Online Learning for Latent Dirichlet Allocation // NIPS, 2010. Pp. 856–864.
+
-
# Lu Y., Mei Q., Zhai C. Investigating task performance of probabilistic topic models: an empirical study of PLSA and LDA // Information Retrieval. — 2011. — Vol.14, no.2. — Pp. 178–203.
+
-
# Vorontsov K. V., Frei O. I., Apishev M. A., Romov P. A., Suvorova M. A., Yanina A. O. [[Media:Voron15cikm-tm.pdf|Non-Bayesian Additive Regularization for Multimodal Topic Modeling of Large Collections]] // Proceedings of the 2015 Workshop on Topic Models: Post-Processing and Applications, October 19, 2015, Melbourne, Australia. ACM, New York, NY, USA. pp. 29–37.
+
-
# Wallach H., Mimno D., McCallum A. Rethinking LDA: Why priors matter // Advances in Neural Information Processing Systems 22 / Ed. by Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, A. Culotta. — 2009. — Pp. 1973–1981.
+
-
 
+
-
== Ссылки ==
+
-
* [http://www.youtube.com/watch?v=vSzsuq7uHPE Видеозапись лекции на ТМШ, 19 июня 2015]
+
-
* [[Тематическое моделирование]]
+
-
* [[Аддитивная регуляризация тематических моделей]]
+
-
* [[Коллекции документов для тематического моделирования]]
+
-
* [[BigARTM]]
+
-
* Конспект лекций: [[Media:Voron-2013-ptm.pdf|Voron-2013-ptm.pdf, 2.6 МБ]] {{важно|(обновление 16 октября 2013)}}.
+
-
* BigARTM: тематическое моделирование больших текстовых коллекций. [http://www.meetup.com/Moscow-Data-Fest/events/224856462/ Data Fest #1], 12 сентября 2015. '''[[Media:voron-2015-datafest.pdf|(PDF,&nbsp;6.5&nbsp;МБ)]]'''.
+
-
 
+
-
[[Категория:Учебные курсы]]
+

Текущая версия

Содержание

Спецкурс читается студентам 2—5 курсов на кафедре «Математические методы прогнозирования» ВМиК МГУ с 2013 года и студентам 6 курса на кафедре «Интеллектуальные системы» ФУПМ МФТИ с 2019 года.

В спецкурсе изучается вероятностное тематическое моделирование (topic modeling) коллекций текстовых документов. Тематическая модель определяет, какие темы содержатся в большой текстовой коллекции, и к каким темам относится каждый документ. Тематические модели позволяют искать тексты по смыслу, а не по ключевым словам, и создавать информационно-поисковые системы нового поколения, основанные на парадигме семантического разведочного поиска (exploratory search). Рассматриваются тематические модели для классификации, категоризации, сегментации, суммаризации текстов естественного языка, а также для рекомендательных систем, анализа банковских транзакционных данных, анализа биомедицинских сигналов. В спецкурсе развивается многокритериальный подход к построению моделей с заданными свойствами — аддитивная регуляризация тематических моделей (АРТМ). Он основан на регуляризации некорректно поставленных задач стохастического матричного разложения. Особое внимание уделяется методам лингвистической регуляризации для моделирования связности текста. Предполагается проведение студентами численных экспериментов на модельных и реальных данных с помощью библиотеки тематического моделирования BigARTM.

От студентов требуются знания курсов линейной алгебры, математического анализа, теории вероятностей. Знание математической статистики, методов оптимизации, машинного обучения, языков программирования Python и С++ желательно, но не обязательно.

Краткая ссылка на эту страницу: bit.ly/2EGWcjA.

Основной материал:

Программа курса

Задача тематического моделирования

Презентация: (PDF, 1,7 МБ) — обновление 11.09.2025. старая видеозапись

Цели и задачи тематического моделирования.

Аддитивная регуляризация тематических моделей.

  • Понятие некорректно поставленной задачи по Адамару. Регуляризация.
  • Лемма о максимизации на единичных симплексах. Условия Каруша–Куна–Таккера.
  • Теорема о необходимом условии максимума регуляризованного правдоподобия для ARTM.
  • Классические тематические модели PLSA и LDA как частные случаи ARTM.

Практика тематического моделирования.

  • Проект с открытым кодом BigARTM.
  • Этапы решения практических задач.
  • Методы предварительной обработки текста.
  • Датасеты и практические задания по курсу.

Моделирование локального контекста

Презентация: (PDF, 3,2 МБ) — обновление 14.09.2025. старая видеозапись

Онлайновый ЕМ-алгоритм.

  • Рациональный ЕМ-алгоритм (встраивание Е-шага внутрь М-шага).
  • Онлайновый EM-алгоритм для ARTM.
  • Пакетный онлайновый регуляризованный EM-алгоритм для ARTM.

Линейная тематизация текста.

  • Линейная тематизация текста за один проход без матрицы \Theta.
  • Локализация E-шага. Линейная тематизация. Коэффициенты внимания. Attentive ARTM.
  • Двунаправленная тематическая модель контекста.
  • Онлайновый EM-алгоритм с однопроходным локализованным E-шагом.

Аналогия с нейросетевыми моделями языка.

  • Свёрточная нейросеть GCNN (Gated Convolutional Network)
  • Модель само-внимания (self-attention) Query-Key-Value.
  • Трансформер и онлайновый EM-алгоритм с многопроходным локализованным E-шагом.
  • Нейросетевая тематическая модель Contextual-Top2Vec.

Реализация ЕМ-алгоритма и комбинирование регуляризаторов

Презентация: (PDF, 1,4 МБ) — обновление 14.09.2025. старая видеозапись

Часто используемые регуляризаторы.

  • Сглаживание и разреживание.
  • Частичное обучение.
  • Декоррелирование тем.
  • Разреживание для отбора тем.

Особенности реализации ЕМ-алгоритма для ARTM.

  • Улучшение сходимости несмещёнными оценками.
  • Замена логарифма в функции потерь.
  • Матричная запись ЕМ-алгоритма.
  • Подбор коэффициентов регуляризации. Траектория регуляризации.
  • Относительные коэффициенты регуляризации.
  • Библиотеки BigARTM и TopicNet.

Эксперименты с регуляризацией.

  • Производительность BigARTM
  • Оценивание качества: перплексия, когерентность, лексическое ядро
  • Регуляризаторы сглаживания, разреживания, декоррелирования и отбора тем.
  • Комбинирование регуляризаторов, эмпирические рекомендации.
  • Эксперименты с отбором тем на синтетических и реальных данных.
  • Сравнение с байесовской моделью HDP (Hierarchical Dirichlet Process).
  • Эффект отбрасывания малых, дублирующих и линейно зависимых тем.

Оценивание качества тематических моделей

Презентация: (PDF, 1,7 МБ) — обновление 30.03.2025. старая видеозапись

Измерение качества тематических моделей.

  • Правдоподобие и перплексия.
  • Интерпретируемость и когерентность. Внутритекстовая когерентность.
  • Разреженность и различность.

Проверка гипотезы условной независимости.

  • Статистики на основе KL-дивергенции и их обобщения.
  • Регуляризатор семантической однородности.
  • Применение статистических тестов условной независимости.

Проблема тематической несбалансированности в данных

  • Проблема малых тем и тем-дубликатов
  • Тематическая несбалансированность как основная причина неинтерпретируемости тем
  • Эксперименты с регуляризаторами отбора тем и декоррелирования
  • Регуляризатор семантической однородности
  • Подходы к балансировке тем

Тематический информационный поиск

Презентация: (PDF, 3,7 МБ) — обновление 24.03.2025. старая видеозапись

Мультимодальные тематические модели.

  • Примеры модальностей.
  • Мультимодальный ARTM и регуляризованный ЕМ-алгоритм.

Иерархические тематические модели.

  • Иерархии тем. Послойное построение иерархии.
  • Регуляризаторы для разделения тем на подтемы.
  • Псевдодокументы родительских тем.
  • Модальность родительских тем.

Эксперименты с тематическим поиском.

  • Методика измерения качества поиска.
  • Тематическая модель для документного поиска.
  • Оптимизация гиперпараметров.

BigARTM и базовые инструменты

Мурат Апишев. Презентация: (zip, 0,6 МБ) — обновление 17.02.2017. Видеозапись

Предварительная обработка текстов

  • Парсинг «сырых» данных.
  • Токенизация, стемминг и лемматизация.
  • Выделение энграмм.
  • Законы Ципфа и Хипса. Фильтрация словаря коллекции. Удаление стоп-слов.

Библиотека BigARTM

  • Методологические рекоммендации по проведению экспериментов.
  • Установка BigARTM.
  • Формат и импорт входных данных.
  • Обучение простой модели (без регуляризации): создание, инициализация, настройка и оценивание модели.
  • Инструмент визуализации тематических моделей VisARTM. Основные возможности, демонстрация работы.

Дополнительный материал:

  • Презентация: (PDF, 1,5 МБ) — обновление 17.03.2017.
  • Видео — обновление 22.03.2017.
  • Воркшоп по BigARTM на DataFest'4. Видео.

Проект «Мастерская знаний»

Презентация: (PNG, 8,1 МБ) — обновление 3.03.2025.

Проект «Мастерская знаний»

  • Цели, задачи, концепция проекта. Тематические подборки научных текстов.
  • Модель векторизации текста для поиска и рекомендаций научных статей.
  • Основные сервисы «Мастерской знаний».

Место тематического моделирования в «Мастерской знаний»

  • Сервис тематизации подборки.
  • Сервисы выявления научных трендов и построения хронологических карт.
  • Вспомогательные функции в сервисе полуавтоматической суммаризации.

Карты знаний

  • Задачи иерархической суммаризации одной статьи, подборки статей.
  • Принципы построения интеллект-карт и карт знаний.
  • Что такое «тема»? Отличия тематизации и картирования.

Мультимодальные тематические модели

Презентация: (PDF, 2,8 МБ) — обновление 7.04.2025. старая видеозапись

Мультиязычные тематические модели.

  • Параллельные и сравнимые коллекции.
  • Регуляризаторы для учёта двуязычных словарей.
  • Кросс-язычный информационный поиск.

Трёхматричные модели.

  • Модели трёхматричных разложений. Понятие порождающей модальности.
  • Автор-тематическая модель (author-topic model).
  • Модель для выделения поведений объектов в видеопотоке.

Тематические модели транзакционных данных.

  • Примеры транзакционных данных в рекомендательных системах, социальных и рекламных сетях.
  • Гиперграфовая модель ARTM. Теорема о необходимом условии максимума регуляризованного правдоподобия.
  • Транзакционные данные в рекомендательных системах. Симметризованная гиперграфовая модель ARTM.
  • Гиперграфовые тематические модели языка. Тематическая модель предложений и сегментоидов.
  • Анализ транзакционных данных для выявления паттернов экономического поведения клиентов банка. Видео.
  • Анализ банковских транзакционных данных для выявления видов деятельности компаний.

Анализ зависимостей

Презентация: (PDF, 2,5 МБ) — обновление 14.04.2025. старая видеозапись

Зависимости, корреляции, связи.

  • Тематические модели классификации и регрессии.
  • Модель коррелированных тем CTM (Correlated Topic Model).
  • Регуляризаторы гиперссылок и цитирования. Выявление тематических влияний в научных публикациях.

Время и пространство.

  • Регуляризаторы времени.
  • Обнаружение и отслеживание тем.
  • Гео-пространственные модели.

Социальные сети.

  • Сфокусированный поиск в социальных медиа (пример: поиск этно-релевантного контента).
  • Выявление тематических сообществ. Регуляризаторы для направленных и ненаправленных связей.
  • Регуляризаторы для выявления социальных ролей пользователей.

Именование и суммаризация тем

Презентация: (PDF, 2,9 МБ) — обновление 28.04.2025. старая видеозапись

Методы суммаризации текстов.

  • Задачи автоматической суммаризации текстов. Подходы к суммаризации: extractive и abstractive.
  • Оценивание и отбор предложений для суммаризации. Релаксационный метод для многокритериальной дискретной оптимизации.
  • Тематическая модель предложений для суммаризации.
  • Критерии качества суммаризации. Метрики ROUGE, BLUE.

Автоматическое именование тем (topic labeling).

  • Формирование названий-кандидатов.
  • Релевантность, покрытие, различность.
  • Оценивание качества именования тем.

Задача суммаризации темы

  • Задача ранжирования документов
  • Задача фильтрации репрезентативных релевантных фраз.
  • Задача генерации связного текста

Проект «Тематизатор»

Презентация: (PDF, 6,7 МБ) — обновление 21.04.2025. Видеозапись

Визуализация тематических моделей

  • Концепция distant reading.
  • Карты знаний, иерархии, взаимосвязи, динамика, сегментация.
  • Спектр тем.
  • Визуализация матричного разложения.

Примеры прикладных задач

  • Поиск этно-релевантных тем в социальных сетях.
  • Анализ программ развития российских вузов.
  • Поиск и рубрикация научных статей на 100 языках.
  • Проекты Школы Прикладного Анализа Данных.

Анализ требований к «Тематизатору»

  • Функциональные требования.
  • Требования к интерпретируемости.
  • Основной пользовательский сценарий: Загрузка, Предобработка, Моделирование, Визуализация, Коррекция.
  • Этапизация работ.

Тематические модели сочетаемости слов

Презентация: (PDF, 1,4 МБ) — обновление 5.05.2025. старая видеозапись и ещё одна старая видеозапись

Мультиграммные модели и выделение терминов.

  • Алгоритм TopMine для быстрого поиска частых фраз. Критерии выделения коллокаций.
  • Синтаксический разбор. Нейросетевые синтаксические анализаторы SyntaxNet, UDpipe.
  • Критерии тематичности фраз.
  • Комбинирование синтаксической, статистической и тематической фильтрации фраз.

Тематические модели дистрибутивной семантики.

  • Дистрибутивная гипотеза. Модели CBOW и SGNS в программе word2vec.
  • Модель битермов BTM (Biterm Topic Model) для тематизации коллекций коротких текстов.
  • Модели WNTM (Word Network Topic Model) и WTM (Word Topic Model). Связь с моделью word2vec.

Позиционный регуляризатор в ARTM.

  • Гипотеза о сегментной структуре текста.
  • Регуляризация и пост-обработка Е-шага. Формулы М-шага.
  • Примеры регуляризаторов Е-шага. Разреживание распределения p(t|d,w). Сглаживание тематики слов по контексту.

Дополнительный материал:

  • Потапенко А. А. Векторные представления слов и документов. DataFest'4. Видео.

Байесовское обучение модели LDA

Презентация: (PDF, 2,1 МБ) — обновление 11.05.2025. старая видеозапись

Классические модели PLSA, LDA.

  • Модель PLSA.
  • Модель LDA. Распределение Дирихле и его свойства.
  • Максимизация апостериорной вероятности для модели LDA.

Вариационный байесовский вывод.

Сэмплирование Гиббса.

Замечания о байесовском подходе.

  • Оптимизация гиперпараметров в LDA.
  • Графическая нотация (plate notation). Stop using plate notation.
  • Сравнение байесовского подхода и ARTM.
  • Как читать статьи по байесовским моделям и строить эквивалентные ARTM-модели.


Отчетность по курсу

Условием сдачи курса является выполнение индивидуальных практических заданий.

Рекомендуемая структура отчёта об исследовании:

  • Постановка задачи: неформальное описание, ДНК (дано–найти–критерий), структура данных
  • Описание простого решения baseline
  • Описание основного решения и его вариантов
  • Описание набора данных и методики экспериментов
  • Результаты экспериментов по подбору гиперпараметров основного решения
  • Результаты экспериментов по сравнению основного решения с baseline
  • Примеры визуализации модели
  • Выводы: что работает, что не работает, инсайты
  • Ссылка на код

Примеры отчётов:

Литература

  1. Воронцов К. В. Вероятностное тематическое моделирование: теория регуляризации ARTM и библиотека с открытым кодом BigARTM. 2025.
  2. Xiaobao Wu, Thong Nguyen, Anh Tuan Luu. A Survey on Neural Topic Models: Methods, Applications, and Challenges. 2023.
  3. Rob Churchill, Lisa Singh. The Evolution of Topic Modeling. 2022.
  4. He Zhao, Dinh Phung, Viet Huynh, Yuan Jin, Lan Du, Wray Buntine. Topic Modelling Meets Deep Neural Networks: A Survey. 2021.
  5. Hamed Jelodar, Yongli Wang, Chi Yuan, Xia Feng. Latent Dirichlet Allocation (LDA) and Topic modeling: models, applications, a survey. 2017.
  6. Hofmann T. Probabilistic latent semantic indexing // Proceedings of the 22nd annual international ACM SIGIR conference on Research and development in information retrieval. — New York, NY, USA: ACM, 1999. — Pp. 50–57.
  7. Blei D. M., Ng A. Y., Jordan M. I. Latent Dirichlet allocation // Journal of Machine Learning Research. — 2003. — Vol. 3. — Pp. 993–1022.
  8. Asuncion A., Welling M., Smyth P., Teh Y. W. On smoothing and inference for topic models // Proceedings of the International Conference on Uncertainty in Artificial Intelligence. — 2009.

Ссылки

Материалы для первого ознакомления:

Подстраницы

Вероятностные тематические модели (курс лекций, К.В.Воронцов)/2015Вероятностные тематические модели (курс лекций, К.В.Воронцов)/2016Вероятностные тематические модели (курс лекций, К.В.Воронцов)/2017
Вероятностные тематические модели (курс лекций, К.В.Воронцов)/2018Вероятностные тематические модели (курс лекций, К.В.Воронцов)/2019, ВМКВероятностные тематические модели (курс лекций, К.В.Воронцов)/2020
Вероятностные тематические модели (курс лекций, К.В.Воронцов)/2021Вероятностные тематические модели (курс лекций, К.В.Воронцов)/2024