Вероятностные тематические модели (курс лекций, К.В.Воронцов)

Материал из MachineLearning.

(Различия между версиями)
Перейти к: навигация, поиск
Текущая версия (17:36, 14 сентября 2025) (править) (отменить)
(Оценивание качества тематических моделей)
 
(310 промежуточных версий не показаны.)
Строка 1: Строка 1:
{{TOCright}}
{{TOCright}}
-
Спецкурс читается студентам 2—5 курсов на кафедре «[[Математические методы прогнозирования (кафедра ВМиК МГУ)|Математические методы прогнозирования]]» [[ВМиК]] [[МГУ]] с 2013 года.
+
Спецкурс читается студентам 2—5 курсов на кафедре «[[Математические методы прогнозирования (кафедра ВМиК МГУ)|Математические методы прогнозирования]]» [[ВМиК]] [[МГУ]] с 2013 года и студентам 6 курса на кафедре «[[Интеллектуальные системы (кафедра МФТИ)|Интеллектуальные системы]]» [[ФУПМ]] [[МФТИ]] с 2019 года.
-
В спецкурсе изучаются методы построения вероятностных тематических моделей (topic modeling) коллекций текстовых документов. Развивается многокритериальный подход к решению некорректно поставленной задачи стохастического матричного разложения — аддитивная регуляризации тематических моделей. Особое внимание будет уделяется комбинированию статистических и лингвистических методов анализа текстов. Рассматриваются прикладные задачи классификации и категоризации текстов, информационного поиска, персонализации и рекомендательных систем, а также задачи анализа и классификации дискретизированных биомедицинских сигналов. Предполагается проведение студентами численных экспериментов на модельных и реальных данных.
+
В спецкурсе изучается вероятностное [[тематическое моделирование]] (topic modeling) коллекций текстовых документов. Тематическая модель определяет, какие темы содержатся в большой текстовой коллекции, и к каким темам относится каждый документ. Тематические модели позволяют искать тексты по смыслу, а не по ключевым словам, и создавать информационно-поисковые системы нового поколения, основанные на парадигме семантического разведочного поиска (exploratory search). Рассматриваются тематические модели для классификации, категоризации, сегментации, суммаризации текстов естественного языка, а также для рекомендательных систем, анализа банковских транзакционных данных, анализа биомедицинских сигналов. В спецкурсе развивается многокритериальный подход к построению моделей с заданными свойствами — [[аддитивная регуляризация тематических моделей]] (АРТМ). Он основан на регуляризации некорректно поставленных задач стохастического матричного разложения. Особое внимание уделяется методам лингвистической регуляризации для моделирования связности текста. Предполагается проведение студентами численных экспериментов на модельных и реальных данных с помощью библиотеки тематического моделирования [[BigARTM]].
-
От студентов требуются знания курсов линейной алгебры, математического анализа, теории вероятностей. Знание математической статистики, методов оптимизации и какого-либо языка программирования желательно, но не обязательно.
+
От студентов требуются знания курсов линейной алгебры, математического анализа, теории вероятностей. Знание математической статистики, методов оптимизации, машинного обучения, языков программирования Python и С++ желательно, но не обязательно.
-
Условием сдачи спецкурса является выполнение индивидуальных практических заданий.
+
Краткая ссылка на эту страницу: [http://bit.ly/2EGWcjA bit.ly/2EGWcjA].
-
* Файл с описанием заданий: '''[[Media:voron-2014-task-PTM.pdf|(voron-2014-task-PTM.pdf)]]'''
+
 +
'''Основной материал:'''
 +
* ''Воронцов К. В.'' [[Media:voron17survey-artm.pdf|Вероятностное тематическое моделирование: теория регуляризации ARTM и библиотека с открытым кодом BigARTM]]. {{важно|— обновление 29.12.2024}}.
 +
* [https://www.youtube.com/playlist?list=PLk4h7dmY2eYE_JjvexGUS5MSozoxDFovp Видеозаписи, 2023 осень (МФТИ)].
= Программа курса =
= Программа курса =
-
=== Задачи анализа текстов. Вероятностные модели коллекций текстов ===
+
== Задача тематического моделирования ==
 +
Презентация: [[Media:Voron25ptm-intro.pdf|(PDF, 1,7 МБ)]] {{важно|— обновление 11.09.2025}}.
 +
[https://youtu.be/DU0AQUNW3YI?list=PLk4h7dmY2eYEnsGW3GIMvIhxPeifcQvQt старая видеозапись]
-
'''Задачи классификации текстов.'''
+
'''Цели и задачи тематического моделирования.'''
-
* Коллекция текстовых документов. Векторное представление документа.
+
* Понятие «темы», цели и задачи [[тематическое моделирование|тематического моделирования]].
-
* Эмпирические законы Ципфа, Ципфа-Мандельброта, Хипса.
+
* Вероятностная модель порождения текста.
-
* Постановка задачи классификации текстов. Объекты, признаки, классы, обучающая выборка.
+
* [[EM-алгоритм]] и его элементарная интерпретация. Формула Байеса и частотные оценки условных вероятностей.
-
* Частоты слов (терминов) как признаки. Распознавание текстов заданной тематики. Анализ тональности.
+
* [[Метод наибольшего правдоподобия|Принцип максимума правдоподобия]].
-
* Линейный классификатор. Наивный байесовский классификатор.
+
-
* Задача распознавание жанра текстов. Распознавание научных текстов. Примеры признаков.
+
-
* Задача категоризации текстов, сведение к последовательности задач классификации.
+
-
'''Задачи предварительной обработки текстов.'''
+
'''Аддитивная регуляризация тематических моделей.'''
-
* Очистка, удаление номеров страниц (колонтитулов), переносов, опечаток, оглавлений, таблиц, рисунков, нетекстовой информации.
+
* Понятие некорректно поставленной задачи по Адамару. Регуляризация.
-
* Лемматизация и стемминг. Сравнение готовых инструментальных средств.
+
* Лемма о максимизации на единичных симплексах. [[Условия Каруша–Куна–Таккера]].
-
* Выделение и удаление стоп-слов и редких слов.
+
* Теорема о необходимом условии максимума регуляризованного правдоподобия для ARTM.
 +
* Классические тематические модели [[Вероятностный латентный семантический анализ|PLSA]] и [[Латентное размещение Дирихле|LDA]] как частные случаи ARTM.
-
'''Задачи информационного поиска.'''
+
'''Практика тематического моделирования.'''
-
* Задача поиска документов по запросу. Инвертированный индекс.
+
* Проект с открытым кодом BigARTM.
-
* Меры сходства векторов частот. Косинусная мера сходства. Расстояние Хеллингера.
+
* Этапы решения практических задач.
-
* Критерий текстовой релевантности TF-IDF. Вероятностная модель и вывод формулы TF-IDF.
+
* Методы предварительной обработки текста.
-
* Задача ранжирования. Примеры признаков. Формирование асессорских обучающих выборок.
+
* Датасеты и практические задания по курсу.
-
'''Униграммная модель документов и коллекции.'''
+
== Моделирование локального контекста ==
-
* Вероятностное пространство. Гипотезы «мешка слов» и «мешка документов». Текст как простая выборка, порождаемая вероятностным распределением. Векторное представление документа как эмпирическое распределение.
+
Презентация: [[Media:Voron25ptm-local.pdf|(PDF, 3,2 МБ)]] {{важно|— обновление 14.09.2025}}.
-
* Понятие параметрической порождающей модели. Принцип максимума правдоподобия.
+
[https://youtu.be/Xe36kQPlbHY?list=PLk4h7dmY2eYEnsGW3GIMvIhxPeifcQvQt старая видеозапись]
-
* Униграммная модель документов и коллекции.
+
-
* ''Ликбез.'' Теорема Куна-Таккера.
+
-
* Аналитическое решение задачи о стационарной точке функции Лагранжа. Частотные оценки условных вероятностей.
+
-
'''Литература:''' [Маннинг 2011].
+
'''Онлайновый ЕМ-алгоритм.'''
-
 
+
-
=== Вероятностный латентный семантический анализ ===
+
-
* ''Напоминания.'' Коллекция текстовых документов. Векторное представление документа. Задачи информационного поиска и классификации текстов.
+
-
 
+
-
'''Мотивации вероятностного тематического моделирования
+
-
* Идея перехода от вектора (терминов) к вектору тем.
+
-
* Цели тематического моделирования: поиск научной информации, агрегирование и анализ новостных потоков, формирование сжатых признаковых описаний документов для классификации и категоризации текстовых документов, обход проблем синонимии и омонимии.
+
-
 
+
-
'''Задача тематического моделирования.'''
+
-
* Вероятностное пространство. Тема как латентная (ненаблюдаемая) переменная. Гипотеза условной независимости. Порождающая модель документа как вероятностной смеси тем.
+
-
* Постановка обратной задачи восстановления параметров модели по данным.
+
-
 
+
-
'''Вероятностный латентный семантический анализ (PLSA).'''
+
-
* Частотные оценки условных вероятностей терминов тем и тем документов. Формула Байеса для апостериорной вероятности темы. Элементарное обоснование ЕМ-алгоритма.
+
-
* Принцип максимума правдоподобия, аналитическое решение задачи о стационарной точке функции Лагранжа, формулы M-шага.
+
* Рациональный ЕМ-алгоритм (встраивание Е-шага внутрь М-шага).
* Рациональный ЕМ-алгоритм (встраивание Е-шага внутрь М-шага).
 +
* Онлайновый EM-алгоритм для ARTM.
 +
* Пакетный онлайновый регуляризованный EM-алгоритм для ARTM.
-
'''Проведение экспериментов на модельных данных.'''
+
'''Линейная тематизация текста.'''
-
* Процесс порождения терминов в документе. Генератор модельных (синтетических) данных. Генерация случайной величины из заданного дискретного распределения.
+
* Линейная тематизация текста за один проход без матрицы <tex>\Theta</tex>.
-
* Распределение Дирихле. Генерация разреженных и сглаженных векторов дискретных распределений из распределения Дирихле.
+
* Локализация E-шага. Линейная тематизация. Коэффициенты внимания. Attentive ARTM.
-
* Оценивание точности восстановления модельных данных. Расстояние между дискретными распределениями. Проблема перестановки тем, венгерский алгоритм.
+
* Двунаправленная тематическая модель контекста.
-
* Проблема неединственности и неустойчивости матричного разложения. Экспериментальное оценивание устойчивости решения.
+
* Онлайновый EM-алгоритм с однопроходным локализованным E-шагом.
-
'''Задание 1.1'''
+
'''Аналогия с нейросетевыми моделями языка.'''
-
Обязательные пункты: 1–3 и любой из последующих.
+
* Свёрточная нейросеть GCNN (Gated Convolutional Network)
-
# Реализовать генератор модельных данных. Реализовать вычисление эмпирических распределений терминов тем и тем документов.
+
* Модель само-внимания (self-attention) Query-Key-Value.
-
# Реализовать оценку точности восстановления с учётом перестановки тем. Вычислить оценку точности для исходных модельных распределений.
+
* Трансформер и онлайновый EM-алгоритм с многопроходным локализованным E-шагом.
-
# Реализовать рациональный ЕМ-алгоритм.
+
* Нейросетевая тематическая модель Contextual-Top2Vec.
-
# Исследовать зависимости точности модели и точности восстановления от числа итераций и от числа тем в модели (при фиксированном числе тем в исходных данных). Что происходит, когда тем больше, чем нужно? Меньше, чем нужно?
+
-
# Исследовать влияние случайного начального приближения на устойчивость решения. Построить эмпирические распределения и доверительные интервалы для расстояний Хеллингера между истинными матрицами и восстановленными.
+
-
# Исследовать влияние разреженности матриц Фи и Тета на устойчивость решения.
+
-
'''Литература:''' [Hofmann 1999].
+
== Реализация ЕМ-алгоритма и комбинирование регуляризаторов ==
 +
Презентация: [[Media:Voron25ptm-regular.pdf|(PDF,&nbsp;1,4&nbsp;МБ)]] {{важно|— обновление 14.09.2025}}.
 +
[https://youtu.be/mUMfoBlslQE?list=PLk4h7dmY2eYEnsGW3GIMvIhxPeifcQvQt старая видеозапись]
-
===Модификации алгоритма обучения модели PLSA===
+
'''Часто используемые регуляризаторы.'''
 +
* Сглаживание и разреживание.
 +
* Частичное обучение.
 +
* Декоррелирование тем.
 +
* Разреживание для отбора тем.
-
* ''Напоминания.'' Задача тематического моделирования коллекции текстовых документов. Модель PLSA, формулы Е-шага и М-шага.
+
'''Особенности реализации ЕМ-алгоритма для ARTM.'''
 +
* Улучшение сходимости несмещёнными оценками.
 +
* Замена логарифма в функции потерь.
 +
* Матричная запись ЕМ-алгоритма.
 +
* Подбор коэффициентов регуляризации. Траектория регуляризации.
 +
* Относительные коэффициенты регуляризации.
 +
* Библиотеки BigARTM и TopicNet.
-
'''Латентное размещение Дирихле (LDA)'''
+
'''Эксперименты с регуляризацией.'''
-
* Сглаженные байесовские оценки условных вероятностей.
+
* Производительность BigARTM
 +
* Оценивание качества: перплексия, когерентность, лексическое ядро
 +
* Регуляризаторы сглаживания, разреживания, декоррелирования и отбора тем.
 +
* Комбинирование регуляризаторов, эмпирические рекомендации.
 +
* Эксперименты с отбором тем на синтетических и реальных данных.
 +
* Сравнение с байесовской моделью HDP (Hierarchical Dirichlet Process).
 +
* Эффект отбрасывания малых, дублирующих и линейно зависимых тем.
-
'''Робастный ЕМ-алгоритм (REM).'''
+
== Оценивание качества тематических моделей ==
-
* Робастная модель с шумом и фоном.
+
Презентация: [[Media:Voron24ptm-quality.pdf|(PDF,&nbsp;1,7&nbsp;МБ)]] {{важно|— обновление 30.03.2025}}.
-
* Упрощённая робастная модель.
+
[https://youtu.be/OoIetK1pTUA?list=PLk4h7dmY2eYEnsGW3GIMvIhxPeifcQvQt старая видеозапись]
-
'''Стохастический ЕМ-алгоритм (SEM).'''
+
'''Измерение качества тематических моделей.'''
-
* Гипотеза разреженности апоcтериорного распределения тем p(t|d,w).
+
* Правдоподобие и перплексия.
-
* Алгоритм сэмплирования Гиббса.
+
* Интерпретируемость и когерентность. Внутритекстовая когерентность.
 +
* Разреженность и различность.
-
'''Онлайновый ЕМ-алгоритм (OEM).'''
+
'''Проверка гипотезы условной независимости.'''
-
* Проблема больших данных.
+
* Статистики на основе KL-дивергенции и их обобщения.
-
* Эвристика разделения М-шага.
+
* Регуляризатор семантической однородности.
-
* Эвристика разделения коллекции на пачки документов.
+
* Применение статистических тестов условной независимости.
-
* Добавление новых документов (folding-in).
+
-
'''Способы формирования начальных приближений.'''
+
'''Проблема тематической несбалансированности в данных'''
-
* Случайная инициализация.
+
* Проблема малых тем и тем-дубликатов
-
* Инициализация по документам.
+
* Тематическая несбалансированность как основная причина неинтерпретируемости тем
-
* Поиск якорных слов. Алгоритм Ароры.
+
* Эксперименты с регуляризаторами отбора тем и декоррелирования
 +
* Регуляризатор семантической однородности
 +
* Подходы к балансировке тем
-
'''Задание 1.2'''
+
== Тематический информационный поиск ==
-
Обязательные пункты: 1 и любой из последующих.
+
Презентация: [[Media:Voron24ptm-exp.pdf|(PDF,&nbsp;3,7&nbsp;МБ)]] {{важно|— обновление 24.03.2025}}.
-
# Реализовать онлайновый алгоритм OEM.
+
[https://youtu.be/2SkbbDYcBUQ?list=PLk4h7dmY2eYEnsGW3GIMvIhxPeifcQvQt старая видеозапись]
-
# Исследовать влияние размера первой пачки и последующих пачек на качество модели.
+
-
# Исследовать влияние выбора числа итераций на внутреннем и внешнем циклах алгоритма OEM на качество и скорость построения модели.
+
-
# Исследовать возможность улучшения качество модели с помощью второго прохода по коллекции (без инициализации p(w|t)).
+
-
# Исследовать влияние частичной разметки на точность модели и точность восстановления. Проверить гипотезу, что небольшой доли правильно размеченных документов уже достаточно для существенного улучшения точности и устойчивости модели.
+
-
'''Литература:''' [Hoffman 2010, Asuncion 2009].
+
'''Мультимодальные тематические модели.'''
 +
* Примеры модальностей.
 +
* Мультимодальный ARTM и регуляризованный ЕМ-алгоритм.
-
===Аддитивная регуляризация тематических моделей===
+
'''Иерархические тематические модели.'''
-
* ''Напоминания''. Вероятностная тематическая модель. Принцип максимума правдоподобия. PLSA. EM-алгоритм.
+
* Иерархии тем. Послойное построение иерархии.
-
* ''Ликбез''. KL-дивергенция.
+
* Регуляризаторы для разделения тем на подтемы.
 +
* Псевдодокументы родительских тем.
 +
* Модальность родительских тем.
-
'''Многокритериальная регуляризация.'''
+
'''Эксперименты с тематическим поиском.'''
-
* Некорректность постановки задачи тематического моделирования.
+
* Методика измерения качества поиска.
-
* Аддитивная регуляризация.
+
* Тематическая модель для документного поиска.
-
* Общая формула M-шага для регуляризованного ЕМ-алгоритма.
+
* Оптимизация гиперпараметров.
 +
<!---
 +
'''Проект «Мастерская знаний»'''
 +
* Поисково-рекомендательная система SciSearch.ru
 +
* Векторный поиск для формирования тематических подборок
 +
* Требования к тематическим моделям для научного информационного поиска--->
-
'''Регуляризатор разреживания.'''
+
== BigARTM и базовые инструменты ==
-
* Гипотеза разреженности распределений терминов тем и тем документов.
+
''Мурат Апишев''.
-
* Энтропийный регуляризатор и максимизация KL-дивергенции.
+
Презентация: [[Media:Base_instruments.zip‎|(zip,&nbsp;0,6&nbsp;МБ)]] {{важно|— обновление 17.02.2017}}.
-
* Связь разреживания с L0-регуляризацией и методом разреживания нейронных сетей [[OBD|Optimal Brain Damage]].
+
[https://youtu.be/AIN00vWOJGw Видеозапись]
-
* Связь разреженности и единственности неотрицательного матричного разложения.
+
-
'''Регуляризатор сглаживания.'''
+
'''Предварительная обработка текстов'''
-
* Модель латентного размещения Дирихле LDA.
+
* Парсинг «сырых» данных.
-
* Обоснование LDA через минимизацию KL–дивергенции. Виды сглаживающих распределений.
+
* Токенизация, стемминг и лемматизация.
-
* Свойства распределения Дирихле, сопряжённость с мультиномиальным распределением.
+
* Выделение энграмм.
-
* Байесовский вывод. Сглаженные частотные оценки условных вероятностей.
+
* Законы Ципфа и Хипса. Фильтрация словаря коллекции. Удаление стоп-слов.
-
* Оценки максимума апостериорной вероятности.
+
-
* Численные методы оптимизации гиперпараметров.
+
-
'''Комбинирование разреживания и сглаживания.'''
+
'''Библиотека BigARTM'''
-
* Разреживание предметных тем и сглаживание фоновых тем. Автоматическое выделение стоп-слов.
+
* Методологические рекоммендации по проведению экспериментов.
-
* Частичное обучение как выборочное сглаживание.
+
* Установка [[BigARTM]].
 +
* Формат и импорт входных данных.
 +
* Обучение простой модели (без регуляризации): создание, инициализация, настройка и оценивание модели.
 +
* Инструмент визуализации тематических моделей VisARTM. Основные возможности, демонстрация работы.
-
'''Ковариационные регуляризаторы.'''
+
'''Дополнительный материал:'''
-
* Антиковариация тем.
+
* Презентация: [[Media:VoronApishev17ptm5.pdf|(PDF,&nbsp;1,5&nbsp;МБ)]] {{важно|— обновление 17.03.2017}}.
-
* Выявление корреляций между темами, модель CTM. Оценивание параметров модели (матрицы ковариаций).
+
* [https://www.youtube.com/watch?v=2LEQuLRxaIY&t=1s '''Видео'''] {{важно|— обновление 22.03.2017}}.
-
* Корреляция документов.
+
* Воркшоп по BigARTM на DataFest'4. [https://www.youtube.com/watch?v=oQcHEm2-7PM '''Видео'''].
-
* Тематические модели цитирования.
+
-
===Разреживание и сглаживание===
+
== Проект «Мастерская знаний» ==
 +
Презентация: [[Media:Voron25ptm-kf.png|(PNG,&nbsp;8,1&nbsp;МБ)]] {{важно|— обновление 3.03.2025}}.
-
'''Сглаживание'''
+
'''Проект «Мастерская знаний»'''
-
* Сравнение LDA и PLSA. Экспериментальные факты: LDA скорее улучшает оценки редких слов, чем снижает переобучение.
+
* Цели, задачи, концепция проекта. Тематические подборки научных текстов.
-
* Дилемма разреживания и сглаживания.
+
* Модель векторизации текста для поиска и рекомендаций научных статей.
 +
* Основные сервисы «Мастерской знаний».
-
'''Частичное обучение (Semi-supervised EM).'''
+
'''Место тематического моделирования в «Мастерской знаний»'''
-
* Виды частично размеченных данных: привязка документа к темам, привязка термина к темам, нерелевантность, переранжирование списков терминов тем и тем документов, виртуальные документы.
+
* Сервис тематизации подборки.
-
* Использование частично размеченных данных для инициализации.
+
* Сервисы выявления научных трендов и построения хронологических карт.
-
* Использование частично размеченных данных в качестве поправок на М-шаге ЕМ-алгоритма.
+
* Вспомогательные функции в сервисе полуавтоматической суммаризации.
-
'''Задание 1.3'''
+
'''Карты знаний'''
-
Обязательные пункты: 1 и любой из остальных.
+
* Задачи иерархической суммаризации одной статьи, подборки статей.
-
# Реализовать разреживание в онлайновом алгоритме OEM.
+
* Принципы построения интеллект-карт и карт знаний.
-
# Исследовать зависимость точности модели и точности восстановления от степени разреженности исходных модельных данных.
+
* Что такое «тема»? Отличия тематизации и картирования.
-
# Исследовать влияние разреживания на точность модели и точность восстановления. Проверить гипотезу, что если исходные данные разрежены, то разреживание существенно улучшает точность восстановления и слабо влияет на точность модели.
+
-
# Исследовать влияние сглаживания на точность модели и точность восстановления.
+
-
'''Литература:''' [Blei, 2003].
+
== Мультимодальные тематические модели ==
 +
Презентация: [[Media:Voron25ptm-modal.pdf|(PDF,&nbsp;2,8&nbsp;МБ)]] {{важно|— обновление 7.04.2025}}.
 +
[https://youtu.be/AfwH0A3NJCQ?list=PLk4h7dmY2eYE_JjvexGUS5MSozoxDFovp старая видеозапись]
-
===Внутренние методы оценивания качества===
+
'''Мультиязычные тематические модели.'''
 +
* Параллельные и сравнимые коллекции.
 +
* Регуляризаторы для учёта двуязычных словарей.
 +
* Кросс-язычный информационный поиск.
-
'''Реальные данные.'''
+
'''Трёхматричные модели.'''
-
* Текстовые коллекции, библиотеки алгоритмов, источники информации.
+
* Модели трёхматричных разложений. Понятие порождающей модальности.
-
* Внутренние и внешние критерии качества.
+
* Автор-тематическая модель (author-topic model).
-
* Дополнительные данные для построения внешних критериев качества.
+
* Модель для выделения поведений объектов в видеопотоке.
-
'''Перплексия и правдоподобие.'''
+
'''Тематические модели транзакционных данных.'''
-
* Определение и интерпретация перплекcии.
+
* Примеры транзакционных данных в рекомендательных системах, социальных и рекламных сетях.
-
* Перплексия контрольной коллекции. Проблема новых слов в контрольной коллекции.
+
* Гиперграфовая модель ARTM. Теорема о необходимом условии максимума регуляризованного правдоподобия.
 +
* Транзакционные данные в рекомендательных системах. Симметризованная гиперграфовая модель ARTM.
 +
* Гиперграфовые тематические модели языка. Тематическая модель предложений и сегментоидов.
 +
* Анализ транзакционных данных для выявления паттернов экономического поведения клиентов банка. '''[https://youtu.be/0q5p7xP4cdA?t=15168 Видео]'''.
 +
* Анализ банковских транзакционных данных для выявления видов деятельности компаний.
-
'''Когерентность.'''
+
== Анализ зависимостей ==
-
* Определение когерентности.
+
Презентация: [[Media:Voron24ptm-rel.pdf|(PDF,&nbsp;2,5&nbsp;МБ)]] {{важно|— обновление 14.04.2025}}.
-
* Эксперименты, показывающие связь когерентности и интерпретируемости.
+
[https://youtu.be/uKCMr9yK3gw?list=PLk4h7dmY2eYE_JjvexGUS5MSozoxDFovp старая видеозапись]
-
* Способы оценивания совместной встречаемости слов.
+
-
''' Оценивание качества темы.'''
+
'''Зависимости, корреляции, связи.'''
-
* Контрастность темы (число типичных документов темы, число типичных терминов темы).
+
* Тематические модели классификации и регрессии.
-
* Пиковость темы.
+
* Модель коррелированных тем CTM (Correlated Topic Model).
-
* Однородность (радиус) темы.
+
* Регуляризаторы гиперссылок и цитирования. Выявление тематических влияний в научных публикациях.
-
* Конфликтность темы (близость темы к другим темам).
+
-
'''Статистические тесты условной независимости.'''
+
'''Время и пространство.'''
-
* Методология проверки статистических гипотез. Критерий согласия хи-квадрат Пирсона. Матрица кросс-табуляции «термины–документы» для заданной темы.
+
* Регуляризаторы времени.
-
* Проблема разреженности распределения. Эксперименты, показывающие неадекватность асимптотического распределения статистики хи-квадрат.
+
* Обнаружение и отслеживание тем.
-
* Статистики модифицированного хи-квадрат, Кульбака-Лейблера, Хеллингера.
+
* Гео-пространственные модели.
-
* Обобщённое семейство статистик Кресси-Рида.
+
-
* Алгоритм вычисления квантилей распределения статистики Кресси-Рида.
+
-
* Рекуррентное вычисление статистики Кресси-Рида.
+
-
'''Литература:''' [Newman, 2009–2011].
+
'''Социальные сети.'''
 +
* Сфокусированный поиск в социальных медиа (пример: поиск этно-релевантного контента).
 +
* Выявление тематических сообществ. Регуляризаторы для направленных и ненаправленных связей.
 +
* Регуляризаторы для выявления социальных ролей пользователей.
-
===Внешние методы оценивания качества===
+
== Именование и суммаризация тем ==
 +
Презентация: [[Media:Voron25ptm-sum.pdf|(PDF,&nbsp;2,9&nbsp;МБ)]] {{важно|— обновление 28.04.2025}}.
 +
[https://youtu.be/nShxhkPbGWY старая видеозапись]
-
'''Оценивание интерпретируемости тематических моделей.'''
+
'''Методы суммаризации текстов.'''
-
* Корректность определения асессорами лишних терминов в темах и лишних тем в документах.
+
* Задачи автоматической суммаризации текстов. Подходы к суммаризации: extractive и abstractive.
-
* Визуализация тематических моделей.
+
* Оценивание и отбор предложений для суммаризации. Релаксационный метод для многокритериальной дискретной оптимизации.
 +
* Тематическая модель предложений для суммаризации.
 +
* Критерии качества суммаризации. Метрики ROUGE, BLUE.
-
'''Критерии качества классификации и ранжирования.'''
+
'''Автоматическое именование тем (topic labeling).'''
-
* Полнота, точность и F-мера в задачах классификации и ранжирования.
+
* Формирование названий-кандидатов.
-
* Критерии качества ранжирования: MAP, DCG, NDCG.
+
* Релевантность, покрытие, различность.
-
* Оценка качества тематического поиска документов по их длинным фрагментам.
+
* Оценивание качества именования тем.
-
'''Задание 1.4.'''
+
'''Задача суммаризации темы'''
-
# Применить OEM к реальным коллекциям.
+
* Задача ранжирования документов
-
# Исследовать на реальных данных зависимость внутренних и внешних критериев качества от эвристических параметров алгоритма обучения OEM.
+
* Задача фильтрации репрезентативных релевантных фраз.
-
# В экспериментах на реальных данных построить зависимости перплексии обучающей и контрольной коллекции от числа итераций и числа тем.
+
* Задача генерации связного текста
-
'''Литература:''' [Blei, 2003].
+
== Проект «Тематизатор» ==
 +
Презентация: [[Media:Voron25ptm-project.pdf|(PDF,&nbsp;6,7&nbsp;МБ)]] {{важно|— обновление 21.04.2025}}.
 +
[https://youtu.be/LctW1J93lmw?list=PLk4h7dmY2eYE_JjvexGUS5MSozoxDFovp Видеозапись]
-
===Робастные тематические модели===
+
'''Визуализация тематических моделей'''
-
''Робастность'' — устойчивость модели к нарушениям исходных предпосылок, заложенных в основу модели.
+
* Концепция distant reading.
 +
* Карты знаний, иерархии, взаимосвязи, динамика, сегментация.
 +
* Спектр тем.
 +
* Визуализация матричного разложения.
-
'''Робастная тематическая модель с фоном и шумом'''
+
'''Примеры прикладных задач'''
-
* Аналитическое решение задачи о стационарной точке функции Лагранжа, формулы M-шага.
+
* Поиск этно-релевантных тем в социальных сетях.
-
* Аддитивный и мультипликативный М-шаг.
+
* Анализ программ развития российских вузов.
-
* Оценки тематичности слов.
+
* Поиск и рубрикация научных статей на 100 языках.
-
* Эксперименты: робастная модель не нуждается в регуляризации и более устойчива к разреживанию.
+
* Проекты Школы Прикладного Анализа Данных.
-
'''Разреженная робастная тематическая модель с шумом'''
+
'''Анализ требований к «Тематизатору»'''
-
* Максимизация правдоподобия для упрощённой робастной модели.
+
* Функциональные требования.
-
* Вычисление перплексии для упрощённой робастной модели.
+
* Требования к интерпретируемости.
 +
* Основной пользовательский сценарий: Загрузка, Предобработка, Моделирование, Визуализация, Коррекция.
 +
* Этапизация работ.
-
'''Робастная тематическая модель с усечёнными распределениями'''
+
== Тематические модели сочетаемости слов ==
-
* Явления синонимии, взаимной заменяемости терминов, эффект burstiness.
+
Презентация: [[Media:Voron25ptm-cooc.pdf|(PDF,&nbsp;1,4&nbsp;МБ)]] {{важно|— обновление 5.05.2025}}.
-
* Гипотеза об усечённых распределениях терминов тем в документах как ослабление гипотезы условной независимости.
+
[https://youtu.be/zuN5HECqv3I?list=PLk4h7dmY2eYEnsGW3GIMvIhxPeifcQvQt старая видеозапись] и ещё одна
-
* Аналитическое решение задачи о стационарной точке функции Лагранжа. Модификация ЕМ-алгоритма.
+
[https://youtu.be/k46UzzMSKt0?list=PLk4h7dmY2eYEnsGW3GIMvIhxPeifcQvQt&t=22 старая видеозапись]
-
'''Задание 1.5'''
+
'''Мультиграммные модели и выделение терминов.'''
-
Обязательные пункты: 1,2 и любой из остальных.
+
* Алгоритм TopMine для быстрого поиска частых фраз. Критерии выделения коллокаций.
-
# Реализовать генерацию модельных данных с фоном и шумом.
+
* Синтаксический разбор. Нейросетевые синтаксические анализаторы SyntaxNet, UDpipe.
-
# Реализовать робастный алгоритм OEM.
+
* Критерии тематичности фраз.
-
# Исследовать зависимость точности робастной модели и точности восстановления от параметров априорной вероятности фона и шума. Что происходит с точностью модели, когда эти параметры «плохо угаданы»?
+
* Комбинирование синтаксической, статистической и тематической фильтрации фраз.
-
# Исследовать возможность оптимизации параметров априорной вероятности шума и фона.
+
-
# Исследовать зависимость перплексии и качества поиска от априорной вероятности шума.
+
-
# Исследовать влияние разреживания тематической компоненты робастной модели на перплексию и качество поиска.
+
-
'''Литература:''' [Chemudugunta, 2006].
+
'''Тематические модели дистрибутивной семантики.'''
 +
* Дистрибутивная гипотеза. Модели CBOW и SGNS в программе word2vec.
 +
* Модель битермов BTM (Biterm Topic Model) для тематизации коллекций коротких текстов.
 +
<!--* Модель всплесков BBTM (Bursty Biterm Topic Model). -->
 +
* Модели WNTM (Word Network Topic Model) и WTM (Word Topic Model). Связь с моделью word2vec.
 +
<!--* Регуляризаторы когерентности. -->
 +
'''Позиционный регуляризатор в ARTM.'''
 +
* Гипотеза о сегментной структуре текста.
 +
* Регуляризация и пост-обработка Е-шага. Формулы М-шага.
 +
* Примеры регуляризаторов Е-шага. Разреживание распределения p(t|d,w). Сглаживание тематики слов по контексту.
-
===Синтаксические тематические модели===
+
'''Дополнительный материал:'''
 +
* ''Потапенко А. А.'' Векторные представления слов и документов. DataFest'4. [https://www.youtube.com/watch?v=KEXWC-ICH_Y '''Видео'''].
-
'''Энграммные модели.'''
+
== Байесовское обучение модели LDA ==
-
* Задача выделения терминов как ключевых фраз (словосочетаний). Словари терминов.
+
Презентация: [[Media:Voron25ptm-bayes.pdf|(PDF,&nbsp;2,1&nbsp;МБ)]] {{важно|— обновление 11.05.2025}}.
-
* Морфологический анализ текста.
+
[https://youtu.be/ZAtfN0ApQh0?list=PLk4h7dmY2eYEnsGW3GIMvIhxPeifcQvQt&t=20 старая видеозапись]
-
* Синтаксический анализ текста. Выявление подчинительных связей.
+
-
* Статистические методы поиска коллокаций. Критерий C-Value.
+
-
* Совмещённый статистический критерий TF-IDF & CValue.
+
-
* Энграммный онлайновый алгоритм на основе синтаксического анализа и фильтрации терминов путём разреживания.
+
-
* Влияние выделения ключевых фраз на качество модели и интерпретируемость тем.
+
-
'''Марковские модели синтаксиса.'''
+
'''Классические модели PLSA, LDA.'''
-
* Коллокации
+
* Модель PLSA.
-
* Оценивание матрицы переходных вероятностей.
+
* Модель LDA. Распределение Дирихле и его свойства.
 +
* Максимизация апостериорной вероятности для модели LDA.
-
===Регуляризация для задач классификации===
+
'''Вариационный байесовский вывод.'''
-
* ''Напоминания''. Аддитивная регуляризация тематических моделей.
+
* Основная теорема вариационного байесовского вывода.
 +
* [[Вариационный байесовский вывод]] для модели LDA.
 +
* VB ЕМ-алгоритм для модели LDA.
-
'''Простейшие модели.'''
+
'''Сэмплирование Гиббса.'''
-
* Примеры классов: годы, авторы, категории, и т.д.
+
* Основная теорема о сэмплировании Гиббса.
-
* Моделирование классов темами.
+
* [[Сэмплирование Гиббса]] для модели LDA.
-
* Моделирование классов распределениями тем.
+
* GS ЕМ-алгоритм для модели LDA.
-
* Автор-тематическая модель.
+
-
* Многоклассовые задачи. Частотный регуляризатор.
+
-
'''Тематическая модель классификации.'''
+
'''Замечания о байесовском подходе.'''
-
* Тематическая модель распределения классов документа. Вероятностная интерпретация.
+
* Оптимизация гиперпараметров в LDA.
-
* Тематическая модель цитирования документов.
+
* Графическая нотация (plate notation). [http://zinkov.com/posts/2013-07-28-stop-using-plates Stop using plate notation].
-
* Тематическая модель цитирования авторов.
+
* Сравнение байесовского подхода и ARTM.
-
* Тематическая модель категоризации. Ковариационный регуляризатор.
+
* Как читать статьи по байесовским моделям и строить эквивалентные ARTM-модели.
-
===Динамические тематические модели===
+
<!---
 +
== Теория ЕМ-алгоритма ==
 +
Презентация: [[Media:Voron24ptm-emlda.pdf|(PDF,&nbsp;2,0&nbsp;МБ)]] {{важно|— обновление 25.10.2024}}.
 +
[https://youtu.be/DBF5QAFC1V0?list=PLk4h7dmY2eYEnsGW3GIMvIhxPeifcQvQt старая видеозапись]
-
'''Модели с дискретным временем.'''
+
'''Общий EM-алгоритм.'''
-
* Модель с фиксированной тематикой.
+
* EM-алгоритм для максимизации неполного правдоподобия.
-
* Модель с медленно меняющейся тематикой.
+
* Регуляризованный EM-алгоритм. Сходимость в слабом смысле.
 +
* Альтернативный вывод формул ARTM.
-
'''Модели с непрерывным временем.'''
+
'''Эксперименты с моделями PLSA, LDA.'''
 +
* Проблема неустойчивости (на синтетических данных).
 +
* Проблема неустойчивости (на реальных данных).
 +
* Проблема переобучения и робастные модели.
-
===Иерархические тематические модели===
+
== Моделирование сегментированного текста ==
-
* Задачи категоризации текстов. Стандартный метод решения сведение к последовательности задач классификации.
+
Презентация: [[Media:Voron24ptm-segm.pdf|(PDF,&nbsp;2,1&nbsp;МБ)]] {{важно|обновление 21.11.2024}}.
 +
[https://youtu.be/k46UzzMSKt0?list=PLk4h7dmY2eYEnsGW3GIMvIhxPeifcQvQt&t=22 старая видеозапись]
-
'''Тематическая модель с фиксированной иерархией.'''
+
'''Мультиграммные модели.'''
-
* Вероятностная формализация отношения «тема–подтема». Тождества, связывающие распределения тем и подтем
+
* Модель BigramTM.
-
* Задача построения иерархического тематического профиля документа.
+
* Модель Topical N-grams (TNG).
-
* Задача построения одного уровня иерархии. Аналитическое решение задачи максимизации правдоподобия, формулы M-шага.
+
* Мультимодальная мультиграммная модель.
-
* Онлайновый иерархический EM-алгоритм.
+
-
* Необходимость частичного обучения для задачи категоризации.
+
-
* Необходимость разреживания для построения иерархического тематического профиля документа.
+
-
'''Сетевые иерархические модели.'''
+
'''Тематические модели предложений.'''
-
* Возможность для темы иметь несколько родительских тем.
+
* Тематическая модель предложений senLDA.
-
* Дивергенция Кульбака–Лейблера. Свойства KL-дивергенции.
+
* Модель коротких сообщений Twitter-LDA.
-
* Интерпретация KL-дивергенции как степени вложенности распределений. Оценивание силы связей «тема-подтема» KL-дивергенцией.
+
* Сегментоиды. Лексические цепочки.
-
* Дополнение тематического дерева до тематической сети.
+
-
'''Иерархические процессы Дирихле.'''
+
'''Тематическая сегментация текста.'''
-
* Оптимизация числа тем в плоской модели.
+
* Метод TopicTiling. Критерии определения границ сегментов.
-
* Создание новых тем в иерархических моделях.
+
* Критерии качества сегментации.
-
* Нисходящие и восходящие иерархические модели.
+
* Оптимизация параметров модели TopicTiling.
 +
--->
-
===Многоязычные тематические модели===
+
=Отчетность по курсу=
-
* Параллельные тексты.
+
Условием сдачи курса является выполнение индивидуальных практических заданий.
-
* Сопоставимые тексты.
+
-
* Регуляризация матрицы переводов слов.
+
-
===Многомодальные тематические модели===
+
'''Рекомендуемая структура отчёта об исследовании:'''
-
* Коллаборативная фильтрация.
+
* Постановка задачи: неформальное описание, ДНК (дано–найти–критерий), структура данных
-
* Модель научной социальной сети.
+
* Описание простого решения baseline
-
* Персонализация рекламы в Интернете.
+
* Описание основного решения и его вариантов
 +
* Описание набора данных и методики экспериментов
 +
* Результаты экспериментов по подбору гиперпараметров основного решения
 +
* Результаты экспериментов по сравнению основного решения с baseline
 +
* Примеры визуализации модели
 +
* Выводы: что работает, что не работает, инсайты
 +
* Ссылка на код
-
===Распараллеливание алгоритмов обучения тематических моделей===
+
'''Примеры отчётов:'''
-
* Основы Map-Reduce
+
* [[Media:kibitova16ptm.pdf|Валерия Кибитова, 2016]]
-
* Распределённое хранение коллекции.
+
* [[Media:filin18ptm.pdf|Максим Филин, 2018]]
 +
* [[Media:ikonnikova18ptm.pdf|Мария Иконникова, 2018]]
-
==Литература==
+
=Литература=
-
'''Основная литература'''
+
-
# Маннинг К., Рагхаван П., Шютце Х. Введение в информационный поиск. — Вильямс, 2011.
+
# ''Воронцов К. В.'' [[Media:voron17survey-artm.pdf|Вероятностное тематическое моделирование: теория регуляризации ARTM и библиотека с открытым кодом BigARTM]]. 2025.
-
# Daud A., Li J., Zhou L., Muhammad F. Knowledge discovery through directed probabilistic topic models: a survey // Frontiers of Computer Science in China.— 2010.— Vol. 4, no. 2. — Pp. 280–301.
+
# ''Xiaobao Wu, Thong Nguyen, Anh Tuan Luu.'' [https://arxiv.org/abs/2401.15351 A Survey on Neural Topic Models: Methods, Applications, and Challenges]. 2023.
-
# Asuncion A., Welling M., Smyth P., Teh Y. W. On smoothing and inference for topic models // Proceedings of the International Conference on Uncertainty in Artificial Intelligence. — 2009.
+
# ''Rob Churchill, Lisa Singh.'' [https://dl.acm.org/doi/10.1145/3507900 The Evolution of Topic Modeling]. 2022.
 +
# ''He Zhao, Dinh Phung, Viet Huynh, Yuan Jin, Lan Du, Wray Buntine.'' [https://arxiv.org/abs/2103.00498 Topic Modelling Meets Deep Neural Networks: A Survey]. 2021.
 +
# ''Hamed Jelodar, Yongli Wang, Chi Yuan, Xia Feng.'' [https://arxiv.org/ftp/arxiv/papers/1711/1711.04305.pdf Latent Dirichlet Allocation (LDA) and Topic modeling: models, applications, a survey]. 2017.
 +
# ''Hofmann T.'' Probabilistic latent semantic indexing // Proceedings of the 22nd annual international ACM SIGIR conference on Research and development in information retrieval. — New York, NY, USA: ACM, 1999. — Pp. 50–57.
 +
# ''Blei D. M., Ng A. Y., Jordan M. I.'' Latent Dirichlet allocation // Journal of Machine Learning Research. — 2003. — Vol. 3. — Pp. 993–1022.
 +
# ''Asuncion A., Welling M., Smyth P., Teh Y. W.'' On smoothing and inference for topic models // Proceedings of the International Conference on Uncertainty in Artificial Intelligence. — 2009.
 +
<!--
 +
# ''Янина А. О., Воронцов К. В.'' [http://jmlda.org/papers/doc/2016/no2/Ianina2016Multimodal.pdf Мультимодальные тематические модели для разведочного поиска в коллективном блоге] // Машинное обучение и анализ данных. 2016. T.2. №2. С.173-186.
 +
# ''Воронцов К.В.'' Тематическое моделирование в BigARTM: теория, алгоритмы, приложения. [[Media:Voron-2015-BigARTM.pdf|Voron-2015-BigARTM.pdf]].
 +
# ''Воронцов К.В.'' Лекции по тематическому моделированию. [[Media:Voron-2013-ptm.pdf|Voron-2013-ptm.pdf]].
'''Дополнительная литература'''
'''Дополнительная литература'''
-
# Воронцов К. В., Потапенко А. А. Регуляризация, робастность и разреженность вероятностных тематических моделей // Компьютерные исследования и моделирование 2012 Т. 4, №12. С 693–706.
+
 
-
# Vorontsov K. V., Potapenko A. A. Tutorial on Probabilistic Topic Modeling: Additive Regularization for Stochastic Matrix Factorization // AIST'2014, Analysis of Images, Social networks and Texts. — Lecture Notes in Computer Science (LNCS), Springer Verlag-Germany, 2014, Vol. CCIS 439. Pp. 28–45.
+
# Воронцов К. В., Потапенко А. А. [http://jmlda.org/papers/doc/2013/no6/Vorontsov2013TopicModeling.pdf Модификации EM-алгоритма для вероятностного тематического моделирования] // Машинное обучение и анализ данных. — 2013. — T. 1, № 6. С. 657–686.
-
# Vorontsov K. V., Potapenko A. A. Additive Regularization of Topic Models // Machine Learning Journal, Special Issue «Data Analysis and Intelligent Optimization», Springer, 2014.
+
# Воронцов К. В., Фрей А. И., Ромов П. А., Янина А. О., Суворова М. А., Апишев М. А. [[Media:Voron15damdid.pdf|BigARTM: библиотека с открытым кодом для тематического моделирования больших текстовых коллекций]] // Аналитика и управление данными в областях с интенсивным использованием данных. XVII Международная конференция DAMDID/RCDL’2015, Обнинск, 13-16 октября 2015.
-
# Blei D. M., Ng A. Y., Jordan M. I. Latent Dirichlet allocation // Journal of Machine Learning Research. — 2003. — Vol. 3. — Pp. 993–1022.
+
# Маннинг К., Рагхаван П., Шютце Х. Введение в информационный поиск. — Вильямс, 2011.
# Chemudugunta C., Smyth P., Steyvers M. Modeling general and specific aspects of documents with a probabilistic topic model // Advances in Neural Information Processing Systems. — MIT Press, 2006. — Vol. 19. — Pp. 241–248.
# Chemudugunta C., Smyth P., Steyvers M. Modeling general and specific aspects of documents with a probabilistic topic model // Advances in Neural Information Processing Systems. — MIT Press, 2006. — Vol. 19. — Pp. 241–248.
 +
# Daud A., Li J., Zhou L., Muhammad F. Knowledge discovery through directed probabilistic topic models: a survey // Frontiers of Computer Science in China.— 2010.— Vol. 4, no. 2. — Pp. 280–301.
# Dempster A. P., Laird N. M., Rubin D. B. Maximum likelihood from incomplete data via the EM algorithm // J. of the Royal Statistical Society, Series B. — 1977. — no. 34. — Pp. 1–38.
# Dempster A. P., Laird N. M., Rubin D. B. Maximum likelihood from incomplete data via the EM algorithm // J. of the Royal Statistical Society, Series B. — 1977. — no. 34. — Pp. 1–38.
-
# Hofmann T. Probabilistic latent semantic indexing // Proceedings of the 22nd annual international ACM SIGIR conference on Research and development in information retrieval. — New York, NY, USA: ACM, 1999. — Pp. 50–57.
 
# Hoffman M. D., Blei D. M., Bach F. R. Online Learning for Latent Dirichlet Allocation // NIPS, 2010. Pp. 856–864.
# Hoffman M. D., Blei D. M., Bach F. R. Online Learning for Latent Dirichlet Allocation // NIPS, 2010. Pp. 856–864.
# Lu Y., Mei Q., Zhai C. Investigating task performance of probabilistic topic models: an empirical study of PLSA and LDA // Information Retrieval. — 2011. — Vol.14, no.2. — Pp. 178–203.
# Lu Y., Mei Q., Zhai C. Investigating task performance of probabilistic topic models: an empirical study of PLSA and LDA // Information Retrieval. — 2011. — Vol.14, no.2. — Pp. 178–203.
 +
# Vorontsov K. V., Potapenko A. A. [[Media:Voron14mlj.pdf|Additive Regularization of Topic Models]] // Machine Learning. Special Issue “Data Analysis and Intelligent Optimization with Applications”: Volume 101, Issue 1 (2015), Pp. 303-323. [[Media:Voron14mlj-rus.pdf|Русский перевод]]
 +
# Vorontsov K. V., Frei O. I., Apishev M. A., Romov P. A., Suvorova M. A., Yanina A. O. [[Media:Voron15cikm-tm.pdf|Non-Bayesian Additive Regularization for Multimodal Topic Modeling of Large Collections]] // Proceedings of the 2015 Workshop on Topic Models: Post-Processing and Applications, October 19, 2015, Melbourne, Australia. ACM, New York, NY, USA. pp. 29–37.
# Wallach H., Mimno D., McCallum A. Rethinking LDA: Why priors matter // Advances in Neural Information Processing Systems 22 / Ed. by Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, A. Culotta. — 2009. — Pp. 1973–1981.
# Wallach H., Mimno D., McCallum A. Rethinking LDA: Why priors matter // Advances in Neural Information Processing Systems 22 / Ed. by Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, A. Culotta. — 2009. — Pp. 1973–1981.
-
# Zavitsanos E., Paliouras G., Vouros G. A. Non-parametric estimation of topic hierarchies from texts with hierarchical Dirichlet processes // Journal of Machine Learning Research. — 2011. — Vol. 12. — Pp. 2749–2775.
+
-->
-
== Ссылки ==
+
= Ссылки =
* [[Тематическое моделирование]]
* [[Тематическое моделирование]]
-
* Конспект лекций: [[Media:Voron-2013-ptm.pdf|Voron-2013-ptm.pdf, 2.6 МБ]] {{важно|(обновление 16 октября 2013)}}.
+
* [[Аддитивная регуляризация тематических моделей]]
-
* Презентация доклада на семинаре в [http://www2.viniti.ru ВИНИТИ РАН], 23 апреля 2013. '''[[Media:voron-viniti-23apr2013.pdf|(PDF,&nbsp;2.0&nbsp;МБ)]]'''.
+
-
 
+
-
== См. также ==
+
* [[Коллекции документов для тематического моделирования]]
* [[Коллекции документов для тематического моделирования]]
 +
* [[BigARTM]]
 +
* [http://www.youtube.com/watch?v=vSzsuq7uHPE Видеозапись лекции на ТМШ, 19 июня 2015]
 +
* ''Воронцов К.В.'' [[Media:voron-2014-task-PTM.pdf|Практическое задание по тематическому моделированию, 2014.]]
-
{{Stub}}
+
'''Материалы для первого ознакомления:'''
 +
* ''[[Media:BigARTM-short-intro.pdf|Тематический анализ больших данных]]''. Краткое популярное введение в BigARTM.
 +
* ''[http://postnauka.ru/video/61910 Разведочный информационный поиск]''. Видеолекция на ПостНауке.
 +
* ''[https://postnauka.ru/faq/86373 Тематическое моделирование]''. FAQ на ПостНауке, совместно с Корпоративным университетом Сбербанка.
 +
* ''[https://www.youtube.com/watch?v=MhNbccnVk5Y Байесовская и классическая регуляризация в вероятностном тематическом моделировании]''. Научно-образовательный семинар «Актуальные проблемы прикладной математики» Новосибирского Государственного Университета, 19 февраля 2021. [[Media:Voron-2021-02-19.pdf|Презентация]].
 +
* ''[https://habrahabr.ru/company/yandex/blog/313340 Тематическое моделирование на пути к разведочному информационному поиску]''. Лекция на DataFest3, 10 сентября 2016. [https://www.youtube.com/watch?v=frLW8UVp_Ik&index=5&list=PLJOzdkh8T5kqfhWXhtYevTUHIvrylDLYu Видеозапись].
 +
 
 +
= Подстраницы =
 +
{{Служебная:Prefixindex/Вероятностные тематические модели (курс лекций, К.В.Воронцов)/}}
[[Категория:Учебные курсы]]
[[Категория:Учебные курсы]]
 +
 +
 +
<!---------------------------------------------------
 +
 +
'''Модели связного текста.'''
 +
* Контекстная документная кластеризация (CDC).
 +
* Метод лексических цепочек.
 +
 +
'''Инициализация.'''
 +
* Случайная инициализация. Инициализация по документам.
 +
* Контекстная документная кластеризация.
 +
* Поиск якорных слов. Алгоритм Ароры.
 +
 +
'''Расширяемые тематические модели.'''
 +
* Пакетный ЕМ-алгоритм.
 +
* Обнаружение новых тем в потоке документов. Инициализация новых тем.
 +
* Проблемы агрегирования коллекций. Жанровая и тематическая фильтрация документов.
 +
 +
== Анализ разнородных данных ==
 +
Презентация: [[Media:Voron18ptm-misc.pdf|(PDF,&nbsp;1,6&nbsp;МБ)]] {{важно|— обновление 03.05.2018}}.
 +
 +
== Примеры приложений тематического моделирования ==
 +
Презентация: [[Media:Voron17ptm11.pdf|(PDF,&nbsp;3,3&nbsp;МБ)]] {{важно|— обновление 16.05.2017}}.
 +
 +
'''Примеры приложений тематического моделирования.'''
 +
* Задача поиска релевантных тем в социальных сетях и новостных потоках.
 +
* Динамическая модель коллекции пресс-релизов.
 +
* Разведочный поиск в коллективном блоге.
 +
* Сценарный анализ записей разговоров контактного центра.
 +
* [[Технология информационного анализа электрокардиосигналов|Информационный анализ электрокардиосигналов]] для скрининговой диагностики.
 +
 +
== Инициализация, траектория регуляризации, тесты адекватности ==
 +
Презентация: [[Media:Voron-PTM-10.pdf|(PDF,&nbsp;Х,Х&nbsp;МБ)]] {{важно|— обновление ХХ.ХХ.2016}}.
 +
 +
'''Траектория регуляризации.'''
 +
* Задача оптимизации трактории в пространстве коэффициентов регуляризации.
 +
* Относительные коэффициенты регуляризации.
 +
* Пространство коэффициентов регуляризации и пространство метрик качества. Регрессионная связь между ними. Инкрементная регрессия.
 +
* Подходы к скаляризации критериев.
 +
* Обучение с подкреплением. Контекстный многорукий бандит. Верхние доверительные границы (UCB).
 +
 +
'''Тесты адекватности.'''
 +
* Статистические тесты условной независимости. Методология проверки статистических гипотез. Критерий согласия хи-квадрат Пирсона.
 +
* Проблема разреженности распределения. Эксперименты, показывающие неадекватность асимптотического распределения статистики хи-квадрат.
 +
* Статистики модифицированного хи-квадрат, Кульбака-Лейблера, Хеллингера.
 +
* Обобщённое семейство статистик Кресси-Рида.
 +
* Эмпирическое оценивание квантилей распределения статистики Кресси-Рида.
 +
* Применения теста условной независимости для поиска плохо смоделированных тем, документов, терминов. Поиск тем для расщепления.
 +
 +
== Обзор оценок качества тематических моделей ==
 +
Презентация: [[Media:Voron-PTM-11.pdf|(PDF,&nbsp;Х,Х&nbsp;МБ)]] {{важно|— обновление ХХ.ХХ.2016}}.
 +
 +
* Внутренние и внешние критерии качества.
 +
* Перплексия и правдоподобие. Интерпретация перплекcии. Перплексия контрольной коллекции. Проблема новых слов в контрольной коллекции. Проблема сравнения моделей с разными словарями. Относительная перплексия.
 +
 +
''' Оценивание качества темы.'''
 +
* Лексическое ядро темы: множество типичных терминов темы.
 +
* Чистота и контрастность темы
 +
* Документное ядро темы: множество типичных документов темы.
 +
* Однородность темы: распределение расстояний между p(w|t) и p(w|t,d).
 +
* Конфликтность темы: близость темы к другим темам.
 +
* Интерпретируемость темы: экспертные оценки, метод интрузий, когерентность. Взрыв интерпретируемости в n-граммных моделях.
 +
 +
'''Устойчивость и полнота.'''
 +
* Эксперименты по оцениванию устойчивости, интерпретируемости и полноты.
 +
* Построение выпуклых оболочек тем и фильтрация зависимых тем в сериях тематических моделей.
 +
 +
'''Критерии качества классификации и ранжирования.'''
 +
* Полнота, точность и F-мера в задачах классификации и ранжирования.
 +
* Критерии качества ранжирования: MAP, DCG, NDCG.
 +
* Оценка качества тематического поиска документов по их длинным фрагментам.
 +
 +
* Вывод M-шага для негладкого регуляризатора.
 +
* Тематическая модель текста и изображений. Задача аннотирования изображений.
 +
-->

Текущая версия

Содержание

Спецкурс читается студентам 2—5 курсов на кафедре «Математические методы прогнозирования» ВМиК МГУ с 2013 года и студентам 6 курса на кафедре «Интеллектуальные системы» ФУПМ МФТИ с 2019 года.

В спецкурсе изучается вероятностное тематическое моделирование (topic modeling) коллекций текстовых документов. Тематическая модель определяет, какие темы содержатся в большой текстовой коллекции, и к каким темам относится каждый документ. Тематические модели позволяют искать тексты по смыслу, а не по ключевым словам, и создавать информационно-поисковые системы нового поколения, основанные на парадигме семантического разведочного поиска (exploratory search). Рассматриваются тематические модели для классификации, категоризации, сегментации, суммаризации текстов естественного языка, а также для рекомендательных систем, анализа банковских транзакционных данных, анализа биомедицинских сигналов. В спецкурсе развивается многокритериальный подход к построению моделей с заданными свойствами — аддитивная регуляризация тематических моделей (АРТМ). Он основан на регуляризации некорректно поставленных задач стохастического матричного разложения. Особое внимание уделяется методам лингвистической регуляризации для моделирования связности текста. Предполагается проведение студентами численных экспериментов на модельных и реальных данных с помощью библиотеки тематического моделирования BigARTM.

От студентов требуются знания курсов линейной алгебры, математического анализа, теории вероятностей. Знание математической статистики, методов оптимизации, машинного обучения, языков программирования Python и С++ желательно, но не обязательно.

Краткая ссылка на эту страницу: bit.ly/2EGWcjA.

Основной материал:

Программа курса

Задача тематического моделирования

Презентация: (PDF, 1,7 МБ) — обновление 11.09.2025. старая видеозапись

Цели и задачи тематического моделирования.

Аддитивная регуляризация тематических моделей.

  • Понятие некорректно поставленной задачи по Адамару. Регуляризация.
  • Лемма о максимизации на единичных симплексах. Условия Каруша–Куна–Таккера.
  • Теорема о необходимом условии максимума регуляризованного правдоподобия для ARTM.
  • Классические тематические модели PLSA и LDA как частные случаи ARTM.

Практика тематического моделирования.

  • Проект с открытым кодом BigARTM.
  • Этапы решения практических задач.
  • Методы предварительной обработки текста.
  • Датасеты и практические задания по курсу.

Моделирование локального контекста

Презентация: (PDF, 3,2 МБ) — обновление 14.09.2025. старая видеозапись

Онлайновый ЕМ-алгоритм.

  • Рациональный ЕМ-алгоритм (встраивание Е-шага внутрь М-шага).
  • Онлайновый EM-алгоритм для ARTM.
  • Пакетный онлайновый регуляризованный EM-алгоритм для ARTM.

Линейная тематизация текста.

  • Линейная тематизация текста за один проход без матрицы \Theta.
  • Локализация E-шага. Линейная тематизация. Коэффициенты внимания. Attentive ARTM.
  • Двунаправленная тематическая модель контекста.
  • Онлайновый EM-алгоритм с однопроходным локализованным E-шагом.

Аналогия с нейросетевыми моделями языка.

  • Свёрточная нейросеть GCNN (Gated Convolutional Network)
  • Модель само-внимания (self-attention) Query-Key-Value.
  • Трансформер и онлайновый EM-алгоритм с многопроходным локализованным E-шагом.
  • Нейросетевая тематическая модель Contextual-Top2Vec.

Реализация ЕМ-алгоритма и комбинирование регуляризаторов

Презентация: (PDF, 1,4 МБ) — обновление 14.09.2025. старая видеозапись

Часто используемые регуляризаторы.

  • Сглаживание и разреживание.
  • Частичное обучение.
  • Декоррелирование тем.
  • Разреживание для отбора тем.

Особенности реализации ЕМ-алгоритма для ARTM.

  • Улучшение сходимости несмещёнными оценками.
  • Замена логарифма в функции потерь.
  • Матричная запись ЕМ-алгоритма.
  • Подбор коэффициентов регуляризации. Траектория регуляризации.
  • Относительные коэффициенты регуляризации.
  • Библиотеки BigARTM и TopicNet.

Эксперименты с регуляризацией.

  • Производительность BigARTM
  • Оценивание качества: перплексия, когерентность, лексическое ядро
  • Регуляризаторы сглаживания, разреживания, декоррелирования и отбора тем.
  • Комбинирование регуляризаторов, эмпирические рекомендации.
  • Эксперименты с отбором тем на синтетических и реальных данных.
  • Сравнение с байесовской моделью HDP (Hierarchical Dirichlet Process).
  • Эффект отбрасывания малых, дублирующих и линейно зависимых тем.

Оценивание качества тематических моделей

Презентация: (PDF, 1,7 МБ) — обновление 30.03.2025. старая видеозапись

Измерение качества тематических моделей.

  • Правдоподобие и перплексия.
  • Интерпретируемость и когерентность. Внутритекстовая когерентность.
  • Разреженность и различность.

Проверка гипотезы условной независимости.

  • Статистики на основе KL-дивергенции и их обобщения.
  • Регуляризатор семантической однородности.
  • Применение статистических тестов условной независимости.

Проблема тематической несбалансированности в данных

  • Проблема малых тем и тем-дубликатов
  • Тематическая несбалансированность как основная причина неинтерпретируемости тем
  • Эксперименты с регуляризаторами отбора тем и декоррелирования
  • Регуляризатор семантической однородности
  • Подходы к балансировке тем

Тематический информационный поиск

Презентация: (PDF, 3,7 МБ) — обновление 24.03.2025. старая видеозапись

Мультимодальные тематические модели.

  • Примеры модальностей.
  • Мультимодальный ARTM и регуляризованный ЕМ-алгоритм.

Иерархические тематические модели.

  • Иерархии тем. Послойное построение иерархии.
  • Регуляризаторы для разделения тем на подтемы.
  • Псевдодокументы родительских тем.
  • Модальность родительских тем.

Эксперименты с тематическим поиском.

  • Методика измерения качества поиска.
  • Тематическая модель для документного поиска.
  • Оптимизация гиперпараметров.

BigARTM и базовые инструменты

Мурат Апишев. Презентация: (zip, 0,6 МБ) — обновление 17.02.2017. Видеозапись

Предварительная обработка текстов

  • Парсинг «сырых» данных.
  • Токенизация, стемминг и лемматизация.
  • Выделение энграмм.
  • Законы Ципфа и Хипса. Фильтрация словаря коллекции. Удаление стоп-слов.

Библиотека BigARTM

  • Методологические рекоммендации по проведению экспериментов.
  • Установка BigARTM.
  • Формат и импорт входных данных.
  • Обучение простой модели (без регуляризации): создание, инициализация, настройка и оценивание модели.
  • Инструмент визуализации тематических моделей VisARTM. Основные возможности, демонстрация работы.

Дополнительный материал:

  • Презентация: (PDF, 1,5 МБ) — обновление 17.03.2017.
  • Видео — обновление 22.03.2017.
  • Воркшоп по BigARTM на DataFest'4. Видео.

Проект «Мастерская знаний»

Презентация: (PNG, 8,1 МБ) — обновление 3.03.2025.

Проект «Мастерская знаний»

  • Цели, задачи, концепция проекта. Тематические подборки научных текстов.
  • Модель векторизации текста для поиска и рекомендаций научных статей.
  • Основные сервисы «Мастерской знаний».

Место тематического моделирования в «Мастерской знаний»

  • Сервис тематизации подборки.
  • Сервисы выявления научных трендов и построения хронологических карт.
  • Вспомогательные функции в сервисе полуавтоматической суммаризации.

Карты знаний

  • Задачи иерархической суммаризации одной статьи, подборки статей.
  • Принципы построения интеллект-карт и карт знаний.
  • Что такое «тема»? Отличия тематизации и картирования.

Мультимодальные тематические модели

Презентация: (PDF, 2,8 МБ) — обновление 7.04.2025. старая видеозапись

Мультиязычные тематические модели.

  • Параллельные и сравнимые коллекции.
  • Регуляризаторы для учёта двуязычных словарей.
  • Кросс-язычный информационный поиск.

Трёхматричные модели.

  • Модели трёхматричных разложений. Понятие порождающей модальности.
  • Автор-тематическая модель (author-topic model).
  • Модель для выделения поведений объектов в видеопотоке.

Тематические модели транзакционных данных.

  • Примеры транзакционных данных в рекомендательных системах, социальных и рекламных сетях.
  • Гиперграфовая модель ARTM. Теорема о необходимом условии максимума регуляризованного правдоподобия.
  • Транзакционные данные в рекомендательных системах. Симметризованная гиперграфовая модель ARTM.
  • Гиперграфовые тематические модели языка. Тематическая модель предложений и сегментоидов.
  • Анализ транзакционных данных для выявления паттернов экономического поведения клиентов банка. Видео.
  • Анализ банковских транзакционных данных для выявления видов деятельности компаний.

Анализ зависимостей

Презентация: (PDF, 2,5 МБ) — обновление 14.04.2025. старая видеозапись

Зависимости, корреляции, связи.

  • Тематические модели классификации и регрессии.
  • Модель коррелированных тем CTM (Correlated Topic Model).
  • Регуляризаторы гиперссылок и цитирования. Выявление тематических влияний в научных публикациях.

Время и пространство.

  • Регуляризаторы времени.
  • Обнаружение и отслеживание тем.
  • Гео-пространственные модели.

Социальные сети.

  • Сфокусированный поиск в социальных медиа (пример: поиск этно-релевантного контента).
  • Выявление тематических сообществ. Регуляризаторы для направленных и ненаправленных связей.
  • Регуляризаторы для выявления социальных ролей пользователей.

Именование и суммаризация тем

Презентация: (PDF, 2,9 МБ) — обновление 28.04.2025. старая видеозапись

Методы суммаризации текстов.

  • Задачи автоматической суммаризации текстов. Подходы к суммаризации: extractive и abstractive.
  • Оценивание и отбор предложений для суммаризации. Релаксационный метод для многокритериальной дискретной оптимизации.
  • Тематическая модель предложений для суммаризации.
  • Критерии качества суммаризации. Метрики ROUGE, BLUE.

Автоматическое именование тем (topic labeling).

  • Формирование названий-кандидатов.
  • Релевантность, покрытие, различность.
  • Оценивание качества именования тем.

Задача суммаризации темы

  • Задача ранжирования документов
  • Задача фильтрации репрезентативных релевантных фраз.
  • Задача генерации связного текста

Проект «Тематизатор»

Презентация: (PDF, 6,7 МБ) — обновление 21.04.2025. Видеозапись

Визуализация тематических моделей

  • Концепция distant reading.
  • Карты знаний, иерархии, взаимосвязи, динамика, сегментация.
  • Спектр тем.
  • Визуализация матричного разложения.

Примеры прикладных задач

  • Поиск этно-релевантных тем в социальных сетях.
  • Анализ программ развития российских вузов.
  • Поиск и рубрикация научных статей на 100 языках.
  • Проекты Школы Прикладного Анализа Данных.

Анализ требований к «Тематизатору»

  • Функциональные требования.
  • Требования к интерпретируемости.
  • Основной пользовательский сценарий: Загрузка, Предобработка, Моделирование, Визуализация, Коррекция.
  • Этапизация работ.

Тематические модели сочетаемости слов

Презентация: (PDF, 1,4 МБ) — обновление 5.05.2025. старая видеозапись и ещё одна старая видеозапись

Мультиграммные модели и выделение терминов.

  • Алгоритм TopMine для быстрого поиска частых фраз. Критерии выделения коллокаций.
  • Синтаксический разбор. Нейросетевые синтаксические анализаторы SyntaxNet, UDpipe.
  • Критерии тематичности фраз.
  • Комбинирование синтаксической, статистической и тематической фильтрации фраз.

Тематические модели дистрибутивной семантики.

  • Дистрибутивная гипотеза. Модели CBOW и SGNS в программе word2vec.
  • Модель битермов BTM (Biterm Topic Model) для тематизации коллекций коротких текстов.
  • Модели WNTM (Word Network Topic Model) и WTM (Word Topic Model). Связь с моделью word2vec.

Позиционный регуляризатор в ARTM.

  • Гипотеза о сегментной структуре текста.
  • Регуляризация и пост-обработка Е-шага. Формулы М-шага.
  • Примеры регуляризаторов Е-шага. Разреживание распределения p(t|d,w). Сглаживание тематики слов по контексту.

Дополнительный материал:

  • Потапенко А. А. Векторные представления слов и документов. DataFest'4. Видео.

Байесовское обучение модели LDA

Презентация: (PDF, 2,1 МБ) — обновление 11.05.2025. старая видеозапись

Классические модели PLSA, LDA.

  • Модель PLSA.
  • Модель LDA. Распределение Дирихле и его свойства.
  • Максимизация апостериорной вероятности для модели LDA.

Вариационный байесовский вывод.

Сэмплирование Гиббса.

Замечания о байесовском подходе.

  • Оптимизация гиперпараметров в LDA.
  • Графическая нотация (plate notation). Stop using plate notation.
  • Сравнение байесовского подхода и ARTM.
  • Как читать статьи по байесовским моделям и строить эквивалентные ARTM-модели.


Отчетность по курсу

Условием сдачи курса является выполнение индивидуальных практических заданий.

Рекомендуемая структура отчёта об исследовании:

  • Постановка задачи: неформальное описание, ДНК (дано–найти–критерий), структура данных
  • Описание простого решения baseline
  • Описание основного решения и его вариантов
  • Описание набора данных и методики экспериментов
  • Результаты экспериментов по подбору гиперпараметров основного решения
  • Результаты экспериментов по сравнению основного решения с baseline
  • Примеры визуализации модели
  • Выводы: что работает, что не работает, инсайты
  • Ссылка на код

Примеры отчётов:

Литература

  1. Воронцов К. В. Вероятностное тематическое моделирование: теория регуляризации ARTM и библиотека с открытым кодом BigARTM. 2025.
  2. Xiaobao Wu, Thong Nguyen, Anh Tuan Luu. A Survey on Neural Topic Models: Methods, Applications, and Challenges. 2023.
  3. Rob Churchill, Lisa Singh. The Evolution of Topic Modeling. 2022.
  4. He Zhao, Dinh Phung, Viet Huynh, Yuan Jin, Lan Du, Wray Buntine. Topic Modelling Meets Deep Neural Networks: A Survey. 2021.
  5. Hamed Jelodar, Yongli Wang, Chi Yuan, Xia Feng. Latent Dirichlet Allocation (LDA) and Topic modeling: models, applications, a survey. 2017.
  6. Hofmann T. Probabilistic latent semantic indexing // Proceedings of the 22nd annual international ACM SIGIR conference on Research and development in information retrieval. — New York, NY, USA: ACM, 1999. — Pp. 50–57.
  7. Blei D. M., Ng A. Y., Jordan M. I. Latent Dirichlet allocation // Journal of Machine Learning Research. — 2003. — Vol. 3. — Pp. 993–1022.
  8. Asuncion A., Welling M., Smyth P., Teh Y. W. On smoothing and inference for topic models // Proceedings of the International Conference on Uncertainty in Artificial Intelligence. — 2009.

Ссылки

Материалы для первого ознакомления:

Подстраницы

Вероятностные тематические модели (курс лекций, К.В.Воронцов)/2015Вероятностные тематические модели (курс лекций, К.В.Воронцов)/2016Вероятностные тематические модели (курс лекций, К.В.Воронцов)/2017
Вероятностные тематические модели (курс лекций, К.В.Воронцов)/2018Вероятностные тематические модели (курс лекций, К.В.Воронцов)/2019, ВМКВероятностные тематические модели (курс лекций, К.В.Воронцов)/2020
Вероятностные тематические модели (курс лекций, К.В.Воронцов)/2021Вероятностные тематические модели (курс лекций, К.В.Воронцов)/2024
Личные инструменты