Модель Тригга-Лича
Материал из MachineLearning.
Введение
Существует довольно очевидная теорема: "Если непрерывная функция на концах некоторого интервала имеет значения разных знаков, то внутри этого интервала у нее есть корень (как минимум, один, но м.б. и несколько)". На базе этой теоремы построено численное нахождение приближенного значения корня функции. Обобщенно этот метод называется дихотомией, т.е. делением отрезка на две части. Обобщенный алгоритм выглядит так:
- Задать начальный интервал 
;
 - Убедиться, что на концах функция имеет разный знак;
 - Повторять
- выбрать внутри интервала точку 
;
 - сравнить знак функции в точке 
со знаком функции в одном из концов;
- если совпадает, то переместить этот конец интервала в точку 
,
 - иначе переместить в точку 
другой конец интервала;
 
 - если совпадает, то переместить этот конец интервала в точку 
 
 - выбрать внутри интервала точку 
 
- пока не будет достигнута нужная точность.
 
Варианты метода дихотомии различаются выбором точки деления. Рассмотрим варианты дихотомии: метод половинного деления и метод хорд.
Метод половинного деления
Метод половинного деления известен также как метод бисекции. В данном методе интервал делится ровно пополам.
Такой подход обеспечивает гарантированную сходимость метода независимо от сложности функции - и это весьма важное свойство. Недостатком метода является то же самое - метод никогда не сойдется быстрее, т.е. сходимость метода всегда равна сходимости в наихудшем случае.
Метод половинного деления:
- Один из простых способов поиска корней функции одного аргумента.
 - Применяется для нахождения значений действительно-значной функции, определяемому по какому-либо критерию (это может быть сравнение на минимум, максимум или конкретное число).
 
Метод половинного деления как метод поиска корней функции
|   |  Данная статья является непроверенным учебным заданием.
 До указанного срока статья не должна редактироваться другими участниками проекта MachineLearning.ru. По его окончании любой участник вправе исправить данную статью по своему усмотрению и удалить данное предупреждение, выводимое с помощью шаблона {{Задание}}. См. также методические указания по использованию Ресурса MachineLearning.ru в учебном процессе.  | 

