Статистические свойства МНК-оценок коэффициентов регрессии
Материал из MachineLearning.
Для того, чтобы МНК-оценки коэффициентов многомерной регрессии обладали полезными статистическими свойствами необходимо выполнение ряда предпосылок относительно оцениваемой регрессионной модели, называемых Основными Положениями.
Основные Положения
- ОП.0 
(модель линейна по параметрам);
 - ОП.1 
- детерминированная
матрица,
(признаки линейно независимы);
 - ОП.2 Регрессионные остатки 
 
- 2.1. одинаково распределены;
 - 2.2. 
(модель несмещенная);
 - 2.3. 
(гомоскедастичность);
 - 2.4. 
(некореллированность).
 
- Дополнительное Предположение 3 (ДП3): 
,
 
- т.е вектор регрессионных остатков 
- нормально распределенный случайный вектор со средним 0 и матрицей ковариации
(
- единичная матрица размера
). В этом случаем модель называется нормальной линейной регрессионной моделью.
 
Свойства МНК-оценок без предположения о нормальности
Теорема Гаусса-Маркова. Пусть выполнены основные положения 0-2. Тогда оценка  полученная по методу наименьших квадратов является эффективной в классе линейных (вида 
) несмещенных оценок (Best Linear Unbiased Estimator, BLUE).
Исходя из этой теоремы можно выделить несколько основных свойств МНК-оценки 
- Линейность:
 
-  
где
 
-  
 
- Несмещенность:
 
- Матрица ковариации равна:
 
-  МНК-оценка 
эффективна.
 
Итак, теорема Гаусса-Маркова утверждает, что любая другая линейная несмещенная оценка будет иметь большую дисперсию, чем МНК-оценка:
Нетрудно показать, что для любого вектора  оценка 
 будет обладать теми же свойствами, что и МНК-оценка 
. Поэтому:
-  если взять 
то получим что
 
- несмещенная, эффективная оценка
-  если 
то
 
- несмещенная, эффективная оценка
Свойства МНК-оценок с предположением о нормальности
Пусть теперь к тому же выполнено ДП3, т.е.  - многомерная нормально распределенная случайная величина, или, что то же самое 
 имеют совместное нормальное распределение. Тогда к перечисленным выше свойствам добавятся следующие:
-  МНК-оценка коэффициентов регрессии 
имеет нормальное распределение:
 
-  Несмещенная оценка для дисперсии шума 
имеет вид:
 
- где RSS есть остаточная сумма квадратов;
 
-  Случайная величина 
распределена по закону хи-квадрат с
степенями свободы
 
-  Оценки 
и
линейно независимы. Откуда получается, что величина
 
- имеет распределение Стьюдента с 
степенями свободы.
 


