Участник:Riabenko/tmp
Материал из MachineLearning.
Ниже под обозначением  понимается выборка объёма 
 из смеси распределений 
 и 
 с весами 
 и 
 соответственно (при генерации каждой выборки используется случайный датчик — если его значение не превосходит 
, то добавляем в выборку элемент, взятый из 
, иначе — элемент, взятый из 
).
Анализ поведения схожих критериев
Требуется исследовать поведение указанной пары статистических критериев, подходящих для решения одной и той же задачи, сравнить мощность и достигаемые уровни значимости и сделать выводы о границах применимости критериев. Необходимо для каждого из критериев построить графики зависимости достигаемых уровней значимости и оценок мощностей от параметров, и показать, в каких областях изменения параметров предпочтительнее использовать тот или иной критерий. Для получения более гладких графиков рекомендуется применять оба критерия к одним и тем же выборкам, а не генерировать их отдельно для каждого.
-  
неверна.
 
-  
— непрерывные равномерные распределения;
Сравнить критерии Смирнова и Крамера-фон Мизеса.
 -  
Сравнить критерии Смирнова и Крамера-фон Мизеса.
 -  
Сравнить критерии Смирнова и его бутстреп-версию (функция ks.boot в пакете Matching).
 
-  
 
-  
неверна.
 
-  
— стандартное распределение Коши;
Сравнить критерии Шапиро-Уилка и хи-квадрат Пирсона.
 -  
— непрерывное равномерное распределение;
Сравнить критерии Харке-Бера и Андерсона-Дарлинга.
 -  
— распределение Стьюдента с двумя степенями свободы;
Сравнить критерии Харке-Бера и хи-квадрат Пирсона.
 
-  
 
-  
; сравнить z-критерии в версиях Вальда и множителей Лагранжа.
 -  
; сравнить z-критерий в версии множителей Лагранжа и точный критерий.
 ; сравнить z-критерий в версии Вальда и точный критерий.
-  
 
-  
среднее значение
равно нулю,
среднее значение
не равно нулю;
 
-  
сравнить критерии знаков и знаковых рангов.
 -  
сравнить критерий знаковых рангов и одновыборочный t-критерий.
 -  
сравнить одновыборочные t- и z-критерии.
 -  
сравнить одновыборочные t- и перестановочный критерии.
 
-  
 
-  
средние равны,
средние не равны;
 
-  
сравнить версии t-критерия для равных и неравных дисперсий.
 -  
сравнить t-критерий для неравных дисперсий и критерий Манна-Уитни-Уилкоксона.
 -  
сравнить t- и z-критерии для неравных дисперсий.
 -  
сравнить критерий Манна-Уитни-Уилкоксона и перестановочный критерий с разностью средних в качестве статистики.
 -  
сравнить t-критерий для неизвестных равных дисперсий и перестановочный критерий с разностью средних в качестве статистики.
 
-  
 
-  
сравнить критерии Фишера и Ансари-Брэдли.
 -  
сравнить критерии Фишера и перестановочный критерий со статистикой Али.
 -   
сравнить критерии Ансари-Брэдли и Зигеля-Тьюки.
 
-  
 
Анализ устойчивости критериев к нарушению предположений
Требуется исследовать поведение указанного критерия в условиях нарушения лежащих в его основе предположений. Оценить мощность и достигаемый уровень значимости критерия при различных значениях параметров, сделать выводы об устойчивости.
-  Двухвыборочный t-критерий для равных дисперсий, нарушение предположения о равенстве дисперсий. 
 
-  Одновыборочный t-критерий, нарушение предположения о нормальности. 
 
-  
— непрерывное равномерное распределение;
 -  
— распределение Коши с коэффициентом сдвига
и коэффициентом масштаба
 -  
— сдвинутое на
распределение Стьюдента с тремя степенями свободы;
 -  
— непрерывное равномерное распределение;
 
-  
 
-  Одновыборочный критерий хи-квадрат для гипотезы о дисперсии, нарушение предположения о нормальности. 
 
-  
— распределение Стьюдента с тремя степенями свободы;
 -  
— непрерывное равномерное распределение;
 -  
— сдвинутое на 2 распределение хи-квадрат с 2 степенями свободы;
 
-  
 
-  Критерий Фишера для проверки равенства дисперсий, нарушение предположения о нормальности.  
 
-  
— непрерывное равномерное распределение;
 -  
— непрерывные равномерные распределения;
 -  
— распределение Стьюдента с тремя степенью свободы;
 -  
— непрерывное равномерное распределение;
 
-  
 
-  Критерий знаковых рангов Уилкоксона, нарушение предположения о симметричности распределения относительно медианы. 
 
-  
где
— стандартное логнормальное распределение;
 -  
где
— распределение хи-квадрат с 4 степенями свободы;
 
-  
 
Ссылки
- psad.homework@gmail.com
 - Практические задания для студентов ММП ВМК
 - Статистический анализ данных (курс лекций, К.В.Воронцов)
 
- Практические задания для студентов каф. ММП ВМК (2009 год)
 - Практические задания для студентов каф. ММП ВМК (2010 год)
 - Практические задания для студентов ФУПМ МФТИ (2011 год)
 - Практические задания для студентов каф. ММП ВМК (2011 год)
 - Практические задания для студентов ФУПМ МФТИ (2012 год)
 - Практические задания для студентов каф. ММП ВМК (2012 год)
 - Практические задания для студентов ФУПМ МФТИ (2013 год)
 - Практические задания для студентов каф. ММП ВМК (2013 год)
 - Практические задания для студентов ФУПМ МФТИ (2014 год)
 - Практические задания для студентов каф. ММП ВМК (2014 год)
 - Практические задания для студентов каф. ММП ВМК (2015 год)
 

