Робастное оценивание
Материал из MachineLearning.
Содержание | 
Введение
Вычисление робастных оценок
Рассмотрим пример. Для оценки  неизвестных параметров 
 используется 
 наблюдений 
, причем они связаны между собой следующим неравенством 
, где элементы матрицы 
 суть известные коэффициенты, а 
 - вектор независимых случайных величин,имеющих (приблизительное)одинаковые функции распределения.   
Тогда решение сводится к следующему: 
Если матрица  - матрица полного ранга 
, то 
,
а оценки 
 будут высиляться по следующей формуле 
, 
где 
, далее 
 - матрица подгонки.
Допустим, что мы получили значения  и остатки 
.
Пусть  - некоторая оценка стандартной ошибки наблюдений 
 (или стандартной ошибки остатков 
)
Метрически винзоризуем наблюдения , заменяя их псевдонаблюдениями  
:
Константа  регулирует степень робастности, её значения хорошо выбирать из промежутка от 1 до 2, например, чаще всего 
.
Затем по псевдонаблюдениям  вычисляются новые значения 
 подгонки (и новые 
).
Действия повторяются до достижения сходимости.
  
 
  
,
Литература
- Хьюбер П. Робастность в статистике. — М.: Мир, 1984.
 
Ссылки
- Робастность в статистике.
 - Робастность статистических процедур.
 - Публикации по робастным методам оценивания параметров и проверке статистических гипотез на сайте профессора НГТУ Лемешко Б.Ю..
 - Robust statistics.
 
|   |  Данная статья является непроверенным учебным заданием.
 До указанного срока статья не должна редактироваться другими участниками проекта MachineLearning.ru. По его окончании любой участник вправе исправить данную статью по своему усмотрению и удалить данное предупреждение, выводимое с помощью шаблона {{Задание}}. См. также методические указания по использованию Ресурса MachineLearning.ru в учебном процессе.  | 

