EM алгоритм (пример)
Материал из MachineLearning.
 
  | 
EM-алгоритм — общий метод нахождения оценок функции правдоподобия в моделях со скрытыми переменными. В данной статье рассматривается интерпретация смеси гауссовых распределений в терминах дискретных скрытых переменных.
Постановка задачи
Задана выборка , в которой
TODO
Требуется найти такие значения параметров ,
которые доставляли бы минимум норме вектора невязки 
.
Описание алгоритма
Вектор  определяется с решение нормального уравнения
Вычислительный эксперимент
Цель вычислительного эксперимента -
y = 1;
Исходный код
Смотри также
Литература
- Bishop, C. Pattern Recognition And Machine Learning. Springer. 2006.
 
|   |  Данная статья является непроверенным учебным заданием.
 До указанного срока статья не должна редактироваться другими участниками проекта MachineLearning.ru. По его окончании любой участник вправе исправить данную статью по своему усмотрению и удалить данное предупреждение, выводимое с помощью шаблона {{Задание}}. См. также методические указания по использованию Ресурса MachineLearning.ru в учебном процессе.  | 

