Сравнение временных рядов при авторегрессионном прогнозе (пример)
Материал из MachineLearning.
Содержание | 
Аннотация
Временным рядом называется последовательность упорядоченных по времени значений некоторой вещественной переменной . Элемент последовательности называется отсчетом временного ряда.
Задача авторегрессионного прогноза заключается в нахождении модели , где 
 вектор параметров модели, которая наилучшим образом приближает следущее значение временного ряда 
.
Свертка временного ряда возникает в случае существования на множестве подпоследовательностей временного ряда некоторого инварианта. Примером инварианта является период временного ряда, который физически может означать сезонность в данных. При этом построенная модель должна учитывать наличие инварианта и сохранять данное свойство для ряда прогнозов: 
.
Постановка задачи
Пусть задан временной ряд . Предполагается, что отсчеты 
 были сделаны через равные промежутки времени, и период временного ряда равен 
, при этом 
, где 
.
Задана модель  
,где случайная величина 
 имеет нормальное распределение 
. Вектор параметров модели 
 рассматривается как многомерная случайная величина. Пусть плотность распределения параметров имеет вид многомерного нормального распределения 
 с матрицей ковариации 
. Модель некоторым образом учитывает период временного ряда.
Предполагается, модель временного ряда может меняться с течением времени, т.е. для разных подпоследовательностей длины 
 оптимальные параметры модели 
 будут отличаться. 
Расстояние между временными рядами
Расстояние между различными подпоследовательностями  и 
 можно вычислить как сумму квадратов отклонений: 
Однако этот метод учитывает только расстояния между парами отсчетов временного ряда. Метод поиска пути минимальной стоимости (warping path) учитывает не только расстояние между отсчетами рядов, но и форму самих временных рядов.
Предположим, мы имеем две последовательности  и 
. Тогда построим матрицу 
 попарных расстояний:
Далее из элементов матрицы  строим путь: 
Построенный путь удовлетворяет следующим условиям:
'1 граничные условия:'Стоимостью пути  будет 
Среди всех путей есть по крайней мере один с минимальной стоимостью. Его стоимость и будем считать расстоянием между последовательностями:
Расстояние между параметрами модели
Расстояние между параметрами модели , настроенной на разных подпоследовательностях, можно измерить как расстояние Кульбака-Лейблера между функциями распределения 2-ух случайных величин 
:
Постановка задачи
Требуется исследовать зависимость расстояния между параметрами модели  от расстояния между подпоследовательностями, на которых эти параметры были настроены.
Алгоритм
Для настройки параметров модели  используется связный байесовский вывод
где  — функция ошибки,
 — матрица Гессе функции ошибок,
 — функция ошибки в пространстве данных.
Настройка параметрической регрессионной модели происходит в 2 этапа, сначала настраиваются параметры  при фиксированных гиперпараметрах 
, затем при вычисленных значениях параметров функция правдоподобия 
 оптимизируется по гиперпараметрам. Процедура повторяется, пока настраиваемые параметры не стабилизируется.
Для простоты вычислений, считаем, что имеет диагональный вид:
.
Вычислительный эксперимент
Вычислительный эксперимент проводился на реальных данных. Использовались временные ряды потребления электроэнергии в некотором регионе с отсчетами 1 час, период ряда равен . 
Эксперимент состоит из этапов:
1) из множества порождающих моделей:
 
была построена их суперпозиция, описывающая потребление электроэнергии за сутки:
2) модель настраивается на подпоследовательности
, 
где  - номер суток. В результате получаем набор оптимальных параметров и гиперпараметров модели, оптимальных для данной подпоследовательности: 
3) строится зависимость расстояния между последовательностями в пространстве параметров:
и расстояний в пространстве значений:
Результаты экспериментов на реальных данных опровергают утверждение о зависимости расстояния между временными рядами в пространстве значений от расстояния между распределениями параметров соответствующей им модели.
Исходный код
Смотри также
Литература
- Стрижов В.В, Пташко Г.О. Построение инвариантов на множестве временных рядов путем динамической свертки свободной переменной. — ВЦ РАН, 2009.
 - Стрижов В.В Методы выбора регрессионных моделей. — ВЦ РАН, 2010.
 

