Распределение Пуассона
Материал из MachineLearning.
| Функция вероятности | |
| Функция распределения | |
| Параметры | |
| Носитель | |
| Функция вероятности | |
| Функция распределения | |
| Математическое ожидание | |
| Медиана | N/A |
| Мода | |
| Дисперсия | |
| Коэффициент асимметрии | |
| Коэффициент эксцесса | |
| Информационная энтропия | |
| Производящая функция моментов | |
| Характеристическая функция | |
Распределение Пуассона моделирует случайную величину, представляющую собой число событий, произошедших за фиксированное время, при условии, что данные события происходят с некоторой фиксированной средней интенсивностью и независимо друг от друга.
Распределение Пуассона играет ключевую роль в теории массового обслуживания.
Определение
Выберем фиксированное число и определим дискретное распределение, задаваемое следующей функцией вероятности:
где
-
обозначает факториал,
-
— основание натурального логарифма.
Тот факт, что случайная величина имеет распределение Пуассона с параметром
записывается:
Моменты
Производящая функция моментов распределения Пуассона имеет вид:
откуда
Для факториальных моментов распределения справедлива общая формула:
где
А так как моменты и факториальные моменты линейным образом связаны, то часто для Пуассоновского распределения исследуются именно факториальные моменты, из которых при необходимости можно вывести и обычные моменты.
Свойства распределения Пуассона
- Сумма независимых пуассоновских случайных величин также имеет распределение Пуассона. Пусть
Тогда
- Пусть
, и
Тогда условное распределение
при условии, что
биномиально. Более точно:

