Участник:Пасконова Ольга/Песочница
Материал из MachineLearning.
Формула замены переменных в неопределенном интеграле
Рассмотрим свойство неопределенного интеграла, часто оказывающееся полезным при вычислении первообразных элементарных функций.
Теорема.
Пусть функции  и 
 определены соответственно на промежутках 
 и 
, причем 
. Если функция 
 имеет на 
 первообразную 
 и, следовательно,
а функция  дифференцируема на 
, то функция 
 имеет на 
, первообразную 
 и 
Формула (1) называется формулой интегрирования подстановкой, а именно подстановкой  = х. Это название объясняется тем, что если формулу (2) записать в виде 
то будет видно, что, для того чтобы вычислить интеграл 
), можно сделать подстановку  и затем вернуться к переменной 
 
Иногда, прежде чем применить метод интегрирования подстановкой, приходится проделать более сложные преоб¬разования подынтегральной функции:
Отмстим, что формулу (18,11) бывает целесообразно ис¬пользовать и в обратном порядке, т, с, справа палево. Имен¬но, иногда удобно вычисление интеграла I f(x) dx с помощью" alt= " t 
'''Примеры.'''
1, Для вычисления интеграла j cos ax dx ес¬тественно сделать подстановку и = ах, тогда I cos ax dx = - [cos и du = -sin u + C - -sin ax -f С, а ^ 0, Ш 2. Для вычисления интеграла | -= удоопо применить 3 2 подстановку и := х +а :
3. При вычислении интегралов вида J полезна подстановка и = ф(х): I 7-777 Ас = J" ^^ = \ тг = In bfx)l + С. Например,
 
Иногда, прежде чем применить метод интегрирования подстановкой, приходится проделать более сложные преоб¬разования подынтегральной функции:
Отмстим, что формулу (18,11) бывает целесообразно ис¬пользовать и в обратном порядке, т, с, справа палево. Имен¬но, иногда удобно вычисление интеграла I f(x) dx с помощью" />


