Участник:Айнагуль Джумабекова/Песочница
Материал из MachineLearning.
| Строка 200: | Строка 200: | ||
При попытке в качестве функции взять синус,ошибка достигала очень большх цифр и был порядка 1.0, что достаточно велико для этой функции.   | При попытке в качестве функции взять синус,ошибка достигала очень большх цифр и был порядка 1.0, что достаточно велико для этой функции.   | ||
Поэтому следует внимательно выбирать шаг, расстояние между точками.  | Поэтому следует внимательно выбирать шаг, расстояние между точками.  | ||
| - | Программа требует ввода координат трех точек.  | + | Программа требует ввода координат трех точек для полинома <tex>x^5</tex> в порядке возрастания,а также точки промежуточной, в которой будет находиться значение производной.  | 
| + | На экран выводится значение, полученное при помощи полинома Лагранжа,истинное значение, полученное аналитически и ошибка вычисления.  | ||
== Список литературы ==  | == Список литературы ==  | ||
| Строка 210: | Строка 211: | ||
*[[Тригонометрическая интерполяция]]  | *[[Тригонометрическая интерполяция]]  | ||
*[[Интерполяция полиномами Лагранжа и Ньютона]]  | *[[Интерполяция полиномами Лагранжа и Ньютона]]  | ||
| - | |||
| - | |||
| - | |||
Версия 15:32, 26 декабря 2008
Содержание | 
Введение
Постановка математической задачи
Численное дифференцирование применяется, если функцию  трудно или невозможно продифференцировать аналитически - например, если она задана таблицей. Оно нужно также при решении дифференциальных уравнений при помощи разностных методов.
Изложение метода
При численном дифференцировании функцию  аппроксимируют легко вычисляемой функцией 
  и приближенно полагают 
. При этом можно использовать различные способы аппроксимации.
Интерполирование полиномами Ньютона
Рассмотрим случай аппроксимации интерполяционным многочленом Ньютона.
Пусть задана сетка  - исследуемая функция. Введем обозначение 
 и введем понятие разделенные разности 
, определяемые следующим образом:
,
и т.д.
Можно доказать, что
.
Запишем интерполяционный многочлен Ньютона и продифференцируем его почленно:
Общая формула примет следующий вид:
Обрывая ряд на некотором числе членов, получим приближенное выражение для соответствующей производной. Наиболее простые выражения получим, оставляя в формуле (1) только первый член:
,
,
Исследование точности полученных выражений при численных расчётах удобно делать  при помощи апостериорной оценки, по скорости убывания членов ряда (1). Если шаг сетки достаточно мал, то погрешность близка к первому  отброшенному члену. Пусть мы используем узлы . Тогда  первый отброшенный член содержит разделенную разность 
, которая согласно (2) примерно равна 
. Перед ней стоит сумма произведений различных множителей 
; каждое произведение содержит 
 множителей, а вся сумма состоит из 
 слагаемых. Отсюда следует оценка погрешности формулы (3) с 
 узлами:
В частности, если сетка равномерная, то , откуда
.
Стоит заметить, что строгое априорное исследование погрешности формулы (3), аналогичное выводу остаточного члена многочлена Ньютона в форме Коши, для произвольного расположения узлов приводит к той же оценке (3).
Таким образом, порядок точности формулы (1) по отношению к шагу сетки равен числу оставленных в ней членов, или, что то же самое, он равен числу узлов интерполяции минус порядок производной. Поэтому минимальное число узлов, необходимое для вычисления -й производной, равно 
; оно приводит к формулам (2) и обеспечивает первый порядок точности. Эти выводы соответствуют общему принципу: при почленном дифференцировании ряда скорость его сходимости уменьшается.
Интерполирование полиномами Лагранжа
Рассмотрим неравномерную сетку 
и обозначим за 
, 
 шаги этой сетки. В качества примера получим формулы численного дифференцирования, основанные на использовании многочлена Лагранжа 
, построенного для функции 
 по трем точкам 
. 
Многочлен 
 имеет вид 
Отсюда получим
Это выражение можно принять за приближенное значение  в любой точке 
∈ 
. 
Его удобнее записать в виде
 , где
, 
.
В частности, при  получим
,
И если сетка равномерна, 
, то приходим к центральной разностной производной, 
.
При использовании интерполяционного многочлена первой степени точно таким образом можно получить односторонние разностные производные 
 и 
.
Далее вычисляя вторую производную многочлена 
, получим приближенное выражение для 
 при 
∈
:
≈
На равномерной сетке это выражение совпадает со второй разностной производной . Ясно, что для приближенного вычисления дальнейших производных уже недостаточно многочлена 
, надо привлекать многочлены более высокого порядка и тем самым увеличивать число узлов, участвующих в аппроксимации.
Порядок погрешности аппроксимации зависит как от порядка интерполяционного многочлена, так и от расположения узлов интерполирования. Получим выражение для погрешности аппроксимации, возникающей при замене   выражением 
. Будем считать, что 
∈ 
 и что величины 
  имеют один и тот же порядок малости при измельчении сетки. По формуле Тейлора в предположении ограниченности 
 получим
,
где ,±
Отсюда приходим к следующим разложениям разностных отношений
Подставляя полученные формулы в выражение для разностной производной и приводя подобные слагаемые получим
, 
∈ 
.
Отсюда видно,что разностное выражение аппроксимирует  со вторым порядком.
Если подставить полученные ранее разностные отношения в выражение для второй производной многочлена , то имеем 
Из этого выражения видно, что даже на равномерной сетке,т.е. когда , второй порядок аппроксимации имеет место лишь в точке 
, а относительно других точек (например,
) выполняется  аппроксимация только первого порядка.
Таким образом, получим аппроксимацию лишь первого порядка.
Интеполирование кубическими сплайнами
Для того, чтобы избежать больших погрешностей в процессе приближения, весь отрезок [a,b] разбивают на частичные отрезки и на каждом из частичных отрезков приближенно заменяют функцию  многочленом невысокой степени (так называемая кусочно-полиномиальная интерполяция).
Одним из способов интерполирования на всем отрезке является интерполирование с помощью сплайн-функций. 
Сплайн-функцией или сплайном называют кусочно-полиномиальную функцию, определенную на отрезке [a,b] и имеющую на этом отрезке некоторое число непрерывных производных. Преимущество сплайнов перед обычной интерполяцией является, во-первых их сходимость, во-вторых, устойчивость процесса вычислений.
Построение кубического сплайна.
Пусть на  [a,b] задана непрерывная функция . Введем сетку
и обозначим 
, 
.
Сплайном соответствующим данной функции 
 и данным узлам 
 называется функция 
, удовлетворяющая следующим условиям:
а) на каждом сегменте , 
  функция 
 является многочленом третьей степени;
б) функция , а также  её первая и вторая производная производные непрерывны на [a,b];
в) ,
;
На каждом из отрезков , 
  будем искать функцию 
 в виде многочлена третьей степени
,
где , 
, где 
 - коэффициенты, подлежащие определению. 
Доказано, что существует единственный кубический сплайн, определяемый условиями а)-в) и граничными условиями 
. 
Для их нахождения используются следующие формулы
1) ,
  
2) Для определения коэффициентов  получаем систему уравнений
  ,
(система решается методом прогонки)
По найденным коэффициентам  коэффициенты 
, 
 определяются с помощью явных формул
3)  
4)   
Найдем производные введенного кубического сплайна, имеем
Рассмотрим оценку погрешности метода, которая зависит от выбора сеток и от гладкости . Для простоты изложения допустим, что сетка равномерная, т.е.
 с  шагом 
От функции  будем требовать существования непрерывной на [a,b] четвертой производной, 
∈ 
. Кроме того, предположим, что выполнены граничные условия 
 и такие же условия для сплайнов. Обозначим,
,    
Пусть  - кубический сплайн, построенный для функции 
 на сетке 
. В следующей теореме приведены оценки погрешности интерполяции для функции 
 и её производных 
, 
Теорема
Для ∈ 
 справедливы оценки 
		::
		::
		::
Из этих оценок следует, что при    (т.е. при 
)  последовательности  
, 
 сходятся соответственно к функциям 
 
.
Обычно дифференцирование кубического сплайна позволят определить первую и вторую производную интерполяционного многочлена с хорошей точностью. Если надо вычислить более высокие производные, то целесообразно строить сплайны высоких порядков. Из-за большей трудоемкости этот способ редко используется. Способ дифференцирования с помощью сплайновой интерполяцией теоретически мало исследован.
Тригонометрическая интерполяция
Не всякую функцию целесообразно приближать алгебраическими многочленами.
Рассмотрим тригонометрическую интерполяцию.
Если  - периодическая функция с периодом l, то естественно строить приближения с помощью функций 
	::
Таким образом, тригонометрическая интерполяция состоит в замене  тригонометрическим многочленом 
,
коэффициенты которого отыскиваются из системы уравнений
,
где .
Рекомендации программисту
При реализации достаточно сложно и трудоемко использовать методы сплайнов и метод тригонометрической интерполяции. Поэтому был рассмотрен случай интерполирования полиномом Лагранжа по трем точкам.
При вычислении полиномов ошибка была ничтожна.
При попытке в качестве функции взять синус,ошибка достигала очень большх цифр и был порядка 1.0, что достаточно велико для этой функции. 
Поэтому следует внимательно выбирать шаг, расстояние между точками.
Программа требует ввода координат трех точек для полинома  в порядке возрастания,а также точки промежуточной, в которой будет находиться значение производной.
На экран выводится значение, полученное при помощи полинома Лагранжа,истинное значение, полученное аналитически и ошибка вычисления.
Список литературы
- А.А.Самарский, А.В.Гулин. Численные методы. Москва «Наука», 1989.
 - Н.Н.Калиткин. Численные методы. Москва «Наука», 1978.
 

