Участник:Айнагуль Джумабекова/Песочница
Материал из MachineLearning.
| Строка 45: | Строка 45: | ||
На равномерной сетке это выражение совпадает со второй разностной производной <tex>u_{\bar{x}x,i}</tex>. Ясно, что для приближенного вычисления дальнейших производных уже недостаточно многочлена <tex>L_{2,i}(x)</tex>, надо привлекать многочлены более высокого порядка и тем самым увеличивать число узлов, участвующих в аппроксимации.  | На равномерной сетке это выражение совпадает со второй разностной производной <tex>u_{\bar{x}x,i}</tex>. Ясно, что для приближенного вычисления дальнейших производных уже недостаточно многочлена <tex>L_{2,i}(x)</tex>, надо привлекать многочлены более высокого порядка и тем самым увеличивать число узлов, участвующих в аппроксимации.  | ||
| + | |||
| + | Порядок погрешности аппроксимации зависит как от порядка интерполяционного многочлена, так и от расположения узлов интерполирования. Получим выражение для погрешности аппроксимации, возникающей при замене  <tex>u'(x)</tex> выражением <tex>L_{2,i}'(x)</tex>. Будем считать, что <tex>x</tex>∈ <tex>[x_{i-1},x_{i+1}]</tex> и что величины <tex>h_i, h_{i+1}</tex>  имеют один и тот же порядок малости при измельчении сетки. По формуле Тейлора в предположении ограниченности <tex>u^{(4)}(x)</tex> получим  | ||
| + | <tex>u_{i+k}=u(x)+(x_{i+k}-x)u'(x)+\frac{{(x_{i+k}-x)}^2}{2}u''(x) +\frac{{(x_{i+k}-x)}^3}{3}u'''(x) +O(h^4)</tex>,  | ||
| + | |||
| + | где <tex>k=0</tex>,±<tex>1,h=max\{h_i,h_{i+1}\}</tex>  | ||
| + | Отсюда приходим к следующим разложениям разностных отношений  | ||
Версия 18:52, 17 декабря 2008
≈
Содержание | 
Введение
Постановка математической задачи
Численное дифференцирование применяется, если функцию  трудно или невозможно продифференцировать аналитически - например, если она задана таблицей. Оно нужно также при решении дифференциальных уравнений при помощи разностных методов.
Изложение метода
При численном дифференцировании функцию  аппроксимируют легко вычисляемой функцией 
  и приближенно полагают 
. При этом можно использовать различные способы аппроксимации.
Интерполирование полиномами Лагранжа
Рассмотрим неравномерную сетку 
и обозначим за 
, 
 шаги этой сетки. В качества примера получим формулы численного дифференцирования, основанные на использовании многочлена Лагранжа 
, построенного для функции 
 по трем точкам 
. 
Многочлен 
 имеет вид 
Отсюда получим
Это выражение можно принять за приближенное значение  в любой точке 
∈ 
. 
Его удобнее записать в виде
 , где
, 
.
В частности, при  получим
,
И если сетка равномерна, 
, то приходим к центральной разностной производной, 
.
При использовании интерполяционного многочлена первой степени точно таким образом можно получить односторонние разностные производные 
 и 
.
Далее вычисляя вторую производную многочлена 
, получим приближенное выражение для 
 при 
∈
:
≈
На равномерной сетке это выражение совпадает со второй разностной производной . Ясно, что для приближенного вычисления дальнейших производных уже недостаточно многочлена 
, надо привлекать многочлены более высокого порядка и тем самым увеличивать число узлов, участвующих в аппроксимации.
Порядок погрешности аппроксимации зависит как от порядка интерполяционного многочлена, так и от расположения узлов интерполирования. Получим выражение для погрешности аппроксимации, возникающей при замене   выражением 
. Будем считать, что 
∈ 
 и что величины 
  имеют один и тот же порядок малости при измельчении сетки. По формуле Тейлора в предположении ограниченности 
 получим
,
где ,±
Отсюда приходим к следующим разложениям разностных отношений

