Коэффициент корреляции Кенделла
Материал из MachineLearning.
| Строка 4: | Строка 4: | ||
Заданы две выборки <tex>x = (x_1,\ldots,x_n),\;\; y = (y_1,\ldots,y_n)</tex>.   | Заданы две выборки <tex>x = (x_1,\ldots,x_n),\;\; y = (y_1,\ldots,y_n)</tex>.   | ||
| - | '''[[Коэффициент корреляции]]''', предложенный Кенделлом равен  | + | '''[[Коэффициент корреляции]]''', предложенный Кенделлом, равен  | 
:: <tex>\tau=1-\frac{4}{n(n-1)}\sum_{i=1}^{n-1}\sum_{j=i+1}^n\left[[x_i<x_j]\neq[y_i<y_j]\right]</tex>,  | :: <tex>\tau=1-\frac{4}{n(n-1)}\sum_{i=1}^{n-1}\sum_{j=i+1}^n\left[[x_i<x_j]\neq[y_i<y_j]\right]</tex>,  | ||
Версия 12:40, 11 ноября 2008
 
  | 
Корреляцию Кенделла также называют мерой взаимной неупорядоченности или рассогласования.
Заданы две выборки . 
Коэффициент корреляции, предложенный Кенделлом, равен
-  
,
 
-  
 
где [логическое выражение]=1, если логическое выражение верно, иначе, 0, например,
Коэффициент  принимает значения от -1 до 1. Равенство 
 указывает на строгую линейную корреляцию.
Гипотеза : Выборки 
 и 
 независимы.
Статистика критерия:
где .
При  статистику критерия можно приблизить нормальным распределением с параметрами (0,1):
Критерий (при уровне значимости ):
- против альтернативы 
: наличие корреляции
 
-  если 
, где
—
-квантиль стандартного нормального распределения.
 
-  если 
 
Связь коэффициента корреляции Кенделла с коэффициентом корреляции Пирсона
В случае выборок из нормального распределения коэффициент корреляции Кенделла  может быть использован для оценки коэффициента корреляции Пирсона 
 по формуле 
Связь коэффициента корреляции Кенделла с коэффициентом корреляциии Спирмена
Выборкам  и 
  соответствуют последовательности рангов:
, где
— ранг
-го объекта в вариационном ряду выборки
;
, где
— ранг
-го объекта в вариационном ряду выборки
.
Проведем операцию упорядочевания рангов.
Расположим ряд значений  в порядке возрастания величины: 
. Тогда последовательность рангов упорядоченной выборки 
 будет представлять собой последовательность натуральных чисел 
. Значения 
, соответствующие значениям 
, образуют в этом случае некоторую последовательность рангов 
.
Коэффициент корриляции Кенделла  и коэффициент корриляции Спирмена 
 выражаются через ранги 
 следующим образом:
Коэффициент корриляции Спирмена учитывает насколько сильна неупорядоченность.
Литература
- Кобзарь А. И. Прикладная математическая статистика. — М.: Физматлит, 2006. — 816 с.
 
|   |  Статья в настоящий момент дорабатывается. Участник:Tsurko Varvara 13:33, 11 ноября 2008 (MSK)  | 

