Участник:Коликова Катя/Песочница
Материал из MachineLearning.
(Различия между версиями)
												
			
			 (→Постановка математической задачи)  | 
			|||
| Строка 1: | Строка 1: | ||
== Введение ==  | == Введение ==  | ||
| - | === Постановка   | + | === Постановка вопроса ===  | 
| + | :Процесс исследования исходного объекта методом математического моделирования и вычислительного эксперимента неизбежно носит приближенный характер, так как на каждом этапе вносятся погрешности. Построение математической модели связано с упрощением исходного явления, недостаточно точным заданием коэффициентов уравнения и других входных данных. По отношению к численному методу, реализующему данную математическую модель, указанные погрешности являются ''неустранимыми'', поскольку они неизбежны в рамках данной модели.  | ||
| + | |||
| + | При переходе от математической модели к численному методу возникают погрешности, называемые ''погрешностями метода''. Они связаны с тем, что всякий численный метод воспроизводит исходную математическую модель приближенно. Наиболее типичными погрешностями метода являются ''погрешность дискретизации'' и ''погрешность округления''.   | ||
| + | |||
| + | При построении численного метода в качестве аналога исходной математической задачи обычно рассматривается ее дискретная модель. Разность решений дискретизированной задачи и исходной называется ''погрешностью дискретизации''.  | ||
| + | |||
== Изложение метода ==  | == Изложение метода ==  | ||
== Числовой пример ==  | == Числовой пример ==  | ||
Версия 18:30, 16 октября 2008
Содержание | 
Введение
Постановка вопроса
- Процесс исследования исходного объекта методом математического моделирования и вычислительного эксперимента неизбежно носит приближенный характер, так как на каждом этапе вносятся погрешности. Построение математической модели связано с упрощением исходного явления, недостаточно точным заданием коэффициентов уравнения и других входных данных. По отношению к численному методу, реализующему данную математическую модель, указанные погрешности являются неустранимыми, поскольку они неизбежны в рамках данной модели.
 
При переходе от математической модели к численному методу возникают погрешности, называемые погрешностями метода. Они связаны с тем, что всякий численный метод воспроизводит исходную математическую модель приближенно. Наиболее типичными погрешностями метода являются погрешность дискретизации и погрешность округления.
При построении численного метода в качестве аналога исходной математической задачи обычно рассматривается ее дискретная модель. Разность решений дискретизированной задачи и исходной называется погрешностью дискретизации.

