Метод Бенджамини-Иекутиели
Материал из MachineLearning.
 (→Определение)  | 
			|||
| Строка 13: | Строка 13: | ||
::<tex>\alpha_1 = \frac{\alpha}{mc}\:,\:\dots\:,\:\alpha_i = \frac{i\alpha}{mc}\:, \:\dots\:, \:\alpha_m = \frac{\alpha}{c}</tex>,  | ::<tex>\alpha_1 = \frac{\alpha}{mc}\:,\:\dots\:,\:\alpha_i = \frac{i\alpha}{mc}\:, \:\dots\:, \:\alpha_m = \frac{\alpha}{c}</tex>,  | ||
где <tex>c = \sum_{i=1}^m\frac{1}{i}</tex>  | где <tex>c = \sum_{i=1}^m\frac{1}{i}</tex>  | ||
| + | |||
| + | Пусть <tex>p_{(1)}\leq \ldots \leq p_{(m)}</tex> — уровни значимости <tex>p_i</tex>, упорядоченные по неубыванию, <tex>H_{(1)}, \ldots, H_{(m)}</tex> — соответствующие <tex>p_{(i)}</tex> гипотезы. Процедура метода Бенджамини-Иекутиели определена следующим образом.  | ||
| + | : Шаг 1. Если <tex>p_{(1)}\geq\frac{\alpha}{mc}</tex>, принять гипотезы <tex>H_{(1)}, \ldots, H_{(m)}</tex> и остановиться. Иначе, если <tex>p_{(1)}<\frac{\alpha}{mc}</tex>, отвергнуть гипотезу <tex>H_{(1)}</tex> и продолжить проверку оставшихся гипотез на уровне значимости <tex>\frac{2\alpha}{mc}</tex>.  | ||
| + | : Шаг 2. Если <tex>p_{(2)}\geq\frac{2\alpha}{mc}</tex>, принять гипотезы <tex>H_{(2)}, \ldots, H_{(m)}</tex> и остановиться. Иначе, если <tex>p_{(2)}<\frac{2\alpha}{mc}</tex>, отвергнуть гипотезу <tex>H_{(2)}</tex> и продолжить проверку оставшихся гипотез на уровне значимости <tex>\frac{3\alpha}{mc}</tex>.  | ||
| + | : И т.д.  | ||
Если обозначить число верных гипотез как <tex>\:m_0</tex>, то метод Бенджамини-Иекутиели обеспечивает контроль над FDR на уровне <tex>\frac{m_0}{m}\alpha \leq \alpha</tex> при любых <tex> p_i</tex> и <tex>T_i</tex>.  | Если обозначить число верных гипотез как <tex>\:m_0</tex>, то метод Бенджамини-Иекутиели обеспечивает контроль над FDR на уровне <tex>\frac{m_0}{m}\alpha \leq \alpha</tex> при любых <tex> p_i</tex> и <tex>T_i</tex>.  | ||
| Строка 28: | Строка 33: | ||
Тогда можно положить константу <tex>c</tex> равной единице и получить [[метод Бенджамини-Хохберга]]. Другими словами [[метод Бенджамини-Хохберга]] - частный случай метода Бенджамини-Иекутиели.  | Тогда можно положить константу <tex>c</tex> равной единице и получить [[метод Бенджамини-Хохберга]]. Другими словами [[метод Бенджамини-Хохберга]] - частный случай метода Бенджамини-Иекутиели.  | ||
| + | |||
== Пример ==  | == Пример ==  | ||
Версия 11:35, 6 февраля 2014
Метод Бенджамини-Иекутиели — один из нисходящих методов контроля ожидаемой доли ложных отклонений гипотез (FDR), который, в отличии от метода Бенджамини-Хохберга, не накладывает дополнительных ограничений на статистики гипотез .
Содержание | 
Определение
Пусть  — семейство гипотез, а 
 — соответствующие им достигаемые уровни значимости. Обозначим за 
 - число отвергнутых гипотез, а за 
 - число неверно отвергнутых гипотез, т.е. число ошибок первого рода.
Ожидаемая доля ложных отклонений гипотез, или FDR, определяется следующим образом
Контроль над FDR на уровне  означает, что
Метод Бенджамини-Иекутиели
Это нисходящая процедура(по аналогии с методом Холма и методом Бенджамини-Хохберга) со следующими уровнями значимости
,
где 
Пусть  — уровни значимости 
, упорядоченные по неубыванию, 
 — соответствующие 
 гипотезы. Процедура метода Бенджамини-Иекутиели определена следующим образом.
-  Шаг 1. Если 
, принять гипотезы
и остановиться. Иначе, если
, отвергнуть гипотезу
и продолжить проверку оставшихся гипотез на уровне значимости
.
 -  Шаг 2. Если 
, принять гипотезы
и остановиться. Иначе, если
, отвергнуть гипотезу
и продолжить проверку оставшихся гипотез на уровне значимости
.
 - И т.д.
 
Если обозначить число верных гипотез как , то метод Бенджамини-Иекутиели обеспечивает контроль над FDR на уровне 
 при любых 
 и 
.
Альтернативная постановка
Переходим к модифицированным достигаемым уровням значимости:
,
где  - 
-ый член вариационного ряда достигаемых уровней значимости
Замечание
Пусть статистики гипотез  независимы или выполняется следующее свойство (PRDS on 
):
не убывает по
,
где  - множество индексов верных гипотез, 
 - произвольное возрастающее множество, то есть, такое, что из 
 и 
 следует 
.
Тогда можно положить константу  равной единице и получить метод Бенджамини-Хохберга. Другими словами метод Бенджамини-Хохберга - частный случай метода Бенджамини-Иекутиели.
Пример
для проверки используем одновыборочный критерий Стьюдента.
С поправкой Холма(Метод Холма):
Верных Неверных Всего Принятых 150 24 174 Отвергнутых 0 26 26 Всего 150 50 200 
С методом Бенджамини-Иекутиели:
Верных Неверных Всего Принятых 150 10 160 Отвергнутых 0 40 40 Всего 150 50 200 
Реализации
- MATLAB: Benjamini and Hochberg/Yekutieli Procedure for Controlling False Discovery Rate - реализация на MathWorks.com
 -  R: функция 
p.adjust(с параметромmethod="BY") из стандартного пакетаstatsпозволяет получить модифицированные уровни значимости с учетом поправки метода Бенджамини-Иекуитеил. 
Ссылки
- Benjamini, Yoav; Yekutieli, Daniel (2001). "The control of the false discovery rate in multiple testing under dependency". Annals of Statistics 29 (4): 1165–1188. doi. MR 1869245.
 

