Сравнение временных рядов при авторегрессионном прогнозе (пример)
Материал из MachineLearning.
 (→Исходный код)  | 
				 (→Исходный код)  | 
			||
| Строка 147: | Строка 147: | ||
== Исходный код ==  | == Исходный код ==  | ||
| - | [https://mlalgorithms.svn.sourceforge.net/svnroot/mlalgorithms/Romanenko2010Compare/    | + | [https://mlalgorithms.svn.sourceforge.net/svnroot/mlalgorithms/Romanenko2010Compare/  Romanenko2010Compare]  | 
== Литература ==  | == Литература ==  | ||
Версия 10:52, 12 марта 2012
Содержание | 
Аннотация
Данная работа посвящена исследованию зависимости между пространственными характеристиками (форма, период) временного ряда[1] и распределением параметров регрессионных моделей, которые описывают эти временные ряды. Один из подходов исследовать данную зависимость - посмотреть, как распределены параметры моделей для похожих в некотором смысле временных рядов, и насколько эти распределения различаются для непохожих (различных в некотором смысле) временных рядов.
Постановка задачи
Временным рядом называется последовательность упорядоченных по времени значений некоторой вещественной переменной . Элемент последовательности называется отсчетом временного ряда.
Задача авторегрессионного прогноза заключается в нахождении модели , где 
 вектор параметров модели, которая наилучшим образом приближает следущее значение временного ряда 
.
Пусть задан временной ряд . Предполагается, что отсчеты 
 были сделаны через равные промежутки времени, и период временного ряда равен 
, при этом 
, где 
.
Задана модель  
,где случайная величина 
 имеет нормальное распределение 
. Вектор параметров модели 
 рассматривается как многомерная случайная величина. Пусть плотность распределения параметров имеет вид многомерного нормального распределения 
 с матрицей ковариации 
. Модель некоторым образом учитывает период временного ряда.
Предполагается, модель временного ряда может меняться с течением времени, т.е. для разных подпоследовательностей длины 
 оптимальные параметры модели 
 будут отличаться. 
Расстояние между временными рядами
Расстояние между различными подпоследовательностями  и 
 можно вычислить как сумму квадратов отклонений: 
Однако этот метод учитывает только расстояния между парами отсчетов временного ряда. Метод поиска пути минимальной стоимости (warping path)[1] учитывает не только расстояние между отсчетами рядов, но и форму самих временных рядов.
Предположим, мы имеем две последовательности  и 
. Тогда построим матрицу 
 попарных расстояний:
Далее из элементов матрицы  строим путь: 
Построенный путь удовлетворяет следующим условиям:
'1 граничные условия:'Стоимостью пути  будет 
Среди всех путей есть по крайней мере один с минимальной стоимостью. Его стоимость и будем считать расстоянием между последовательностями:
Алгоритм поиска пути минимальной стоимости рекурсивно находит длину пути наименьшей стоимости  до каждого элемента матрицы 
: 
Расстояние между параметрами модели
Расстояние между параметрами модели , настроенной на разных подпоследовательностях, можно измерить как расстояние Кульбака-Лейблера между функциями распределения 2-ух случайных величин 
:
Постановка задачи
Требуется исследовать зависимость расстояния между параметрами модели  от расстояния между подпоследовательностями, на которых эти параметры были настроены.
Алгоритм
Для настройки параметров модели  используется связный байесовский вывод
где  — функция ошибки,
 — матрица Гессе функции ошибок,
 — функция ошибки в пространстве данных.
Настройка параметрической регрессионной модели происходит в 2 этапа [1], сначала настраиваются параметры  при фиксированных гиперпараметрах 
, затем при вычисленных значениях параметров функция правдоподобия 
 оптимизируется по гиперпараметрам. Процедура повторяется, пока настраиваемые параметры не стабилизируется.
Для простоты вычислений, считаем, что имеет диагональный вид:
.
Вычислительный эксперимент
Пример на реальных данных
Вычислительный эксперимент проводился на реальных данных. Использовались временные ряды потребления электроэнергии в некотором регионе с отсчетами 1 час, период ряда равен . 
Эксперимент состоит из этапов:
1) из множества порождающих моделей:
 
была построена их суперпозиция, описывающая потребление электроэнергии за сутки:
2) модель настраивается на подпоследовательности 
, 
где  - номер суток. В результате получаем набор оптимальных параметров и гиперпараметров модели, оптимальных для данной подпоследовательности: 
3) строится зависимость расстояния между последовательностями в пространстве параметров:
Результаты экспериментов на реальных данных показывают, что можно выделить среди множества пар временных рядов похожие и непохожие. Используя расстояние Кульбака-Лейблера между распределениями параметров моделей можно установить порог, который поможет определить похожие на заранее выделенный тип временных рядов. Для пояснения вышесказанного приведем пример на модельных данных, в которых участвуют временные ряды двух типов.
Пример на сгенерированных данных
Проведен для для 6 моделей распределения данных: 
1) , где 
;
2) , где 
;
3) , где 
, 
 - дисперсия случайной величины;
4) , где 
;
5) , где 
;
6) , где 
.
Первые три модели относится в первому типу (line), три последних модели относятся ко второму типу (parabola).
Прогнозирующая модель была линейной: .
На тестовом примере видно, что чем больше расстояние между рядами в пространстве значений, тем скорее больше будет разница между распределениями настроенных параметров. На картинках можно явно разделить увидеть, что расстояние Кульбака-Лейблера между распределениями настроенных параметров для похожих моделей (line - line или parabola - parabola) значительно меньше расстояния между параметрами непохожих моделей (line-parabola или parabola-line). Таким образом можно настроить такой порог, по которому можно было бы определить, относится ли временной ряд к заранее фиксированному типу моделей.
Исходный код
Литература
|   |  Данная статья была создана в рамках учебного задания.
 
 См. также методические указания по использованию Ресурса MachineLearning.ru в учебном процессе.  | 

