Прогнозирование объемов продаж новых товаров (отчет)
Материал из MachineLearning.
 (→Требования к проекту)  | 
				 (→Постановка задачи)  | 
			||
| Строка 31: | Строка 31: | ||
== Постановка задачи ==  | == Постановка задачи ==  | ||
На основе данных продаж за фиксированное число дней (параметр stp) прогнозируются продажи новых товаров на 7 дней вперёд с наибольшей вероятностью ('''Θ'''=0.5) и вероятностями 25%, 40%.  | На основе данных продаж за фиксированное число дней (параметр stp) прогнозируются продажи новых товаров на 7 дней вперёд с наибольшей вероятностью ('''Θ'''=0.5) и вероятностями 25%, 40%.  | ||
| - | + |  <tex>x_{i}(t)</tex> - временной ряд для каждого из товаров, <tex>y_{i}(t)</tex> - значение продаж для каждого такого ряда. Будем использовать функционал качества   | |
| + | <center>  | ||
| + | <tex>Q(y, \hat{y}) = \sum_{i}|y_{i}-\hat{y}_{i}|.</tex>  | ||
| + | </center>  | ||
| + | где y, \hat{y} соответственно известное значение и прогноз.  | ||
== Описание алгоритмов ==  | == Описание алгоритмов ==  | ||
Версия 14:09, 9 марта 2010
Введение в проект
Описание проекта
Цель проекта
Цель проекта - прогнозирование еженедельных продаж новых товаров.
Обоснование проекта
Результаты проекта могут быть использованы для планирования объёмов продаж новых товаров.
Описание данных
Дано: товарный классификатор (иерархия товарных групп); региональный классификатор (иерархия магазинов и регионов); товародвижения (продажи, поставки, остатки и пр., праздники и промо-акции).
Критерии качества
Продажи прогнозируется по каждому товару раздельно. Прогнозирование объёмов продаж на неделю основывается на предыстории продаж за фиксированное число дней. Это число дней регулируется переменной stp (количество шагов - количество дней, на которых основывается прогноз). Критерием качества служит сумма модулей отклонения прогноза от реальной величины покупок по дням.
Требования к проекту
Сумма модулей отклонения в алгоритме проекта должна быль меньше, чем для скользящего среднего за 30 дней.
Выполнимость проекта
Прогнозирование объёмов продаж новых товаров производится в будние дни (время праздников и промо-акций в проекте не рассматривается).
Используемые методы
Прогнозирование производится методом квантильной регрессии для различных квантилей Θ (0.25; 0.4; 0.5; 0.6; 0.75). При прогнозировании можно менять параметр stp.
Постановка задачи
На основе данных продаж за фиксированное число дней (параметр stp) прогнозируются продажи новых товаров на 7 дней вперёд с наибольшей вероятностью (Θ=0.5) и вероятностями 25%, 40%.
- временной ряд для каждого из товаров,
- значение продаж для каждого такого ряда. Будем использовать функционал качества
где y, \hat{y} соответственно известное значение и прогноз.
Описание алгоритмов
В проекте использовался метод квантильной регрессии.
Обзор литературы
Базовые предположения
Математическое описание
Варианты или модификации
Описание системы
- Ссылка на файл system.docs
 - Ссылка на файлы системы
 
Отчет о вычислительных экспериментах
Визуальный анализ работы алгоритма
Анализ качества работы алгоритма
Анализ зависимости работы алгоритма от параметров
Отчет о полученных результатах
Список литературы
|   |  Данная статья является непроверенным учебным заданием.
 До указанного срока статья не должна редактироваться другими участниками проекта MachineLearning.ru. По его окончании любой участник вправе исправить данную статью по своему усмотрению и удалить данное предупреждение, выводимое с помощью шаблона {{Задание}}. См. также методические указания по использованию Ресурса MachineLearning.ru в учебном процессе.  | 

