Алгоритм AnyBoost
Материал из MachineLearning.
 (→Описание алгоритма)  | 
			|||
| Строка 5: | Строка 5: | ||
'''Алгоритм AnyBoost'''   | '''Алгоритм AnyBoost'''   | ||
| - | Рассмотрим задачу классификации  | + | Рассмотрим задачу [[классификация|классификации]]. Пусть <tex>\mathcal{F}</tex>  - множество базовых классификаторов, а <tex>\mathrm{lin}\mathcal{F})</tex>  - множество всех линейных комбинаций из <tex>\mathcal{F}</tex>.   | 
| - | На каждом шаге алгоритма к текущему классификатору <tex>F</tex> прибавляется базовый классификатор так, чтобы значение <tex>C(F+\  | + | На каждом шаге алгоритма к текущему классификатору <tex>F\in \mathcal{F}</tex> прибавляется базовый классификатор так, чтобы значение <tex>C(F+\varepsilon f)</tex> уменьшилось на некоторое значение <tex>\varepsilon</tex>. То есть в терминах функционального пространства для функции <tex>f</tex> ищется направление, в котором функция <tex>C(F+\varepsilon f)</tex> быстрее уменьшается. Наибольшее уменьшение функции потерь наблюдается в случае, когда <tex>f</tex> максимизирует величину <tex>-\left \langle \nabla C(F),f \right \rangle </tex>.  | 
# Инициализация <tex>F_0=0</tex>;  | # Инициализация <tex>F_0=0</tex>;  | ||
| Строка 21: | Строка 21: | ||
Функция потерь <tex> C=\frac{1}{m}\sum^{m}_{i=1}{c(y_iF(x_i))}</tex> определяется через дифференцируемую функцию выброса <tex>c:\mathbb{R} \to \mathbb{R}</tex>.  | Функция потерь <tex> C=\frac{1}{m}\sum^{m}_{i=1}{c(y_iF(x_i))}</tex> определяется через дифференцируемую функцию выброса <tex>c:\mathbb{R} \to \mathbb{R}</tex>.  | ||
В этом случае <tex>-\left \langle \nabla C(F),f \right \rangle = -\frac{1}{m^2}\sum^{m}_{i=1}{y_if(x_i)c'(y_iF(x_i))} </tex>, и нахождение классификатора на каждом шаге будет равносильно нахождению классификатора <tex>f</tex>, минимизирующего взвешенную ошибку.  | В этом случае <tex>-\left \langle \nabla C(F),f \right \rangle = -\frac{1}{m^2}\sum^{m}_{i=1}{y_if(x_i)c'(y_iF(x_i))} </tex>, и нахождение классификатора на каждом шаге будет равносильно нахождению классификатора <tex>f</tex>, минимизирующего взвешенную ошибку.  | ||
| + | |||
==Методы голосования как частный случай AnyBoost==  | ==Методы голосования как частный случай AnyBoost==  | ||
Версия 19:49, 7 февраля 2010
|   |  Данная статья является непроверенным учебным заданием.
 До указанного срока статья не должна редактироваться другими участниками проекта MachineLearning.ru. По его окончании любой участник вправе исправить данную статью по своему усмотрению и удалить данное предупреждение, выводимое с помощью шаблона {{Задание}}. См. также методические указания по использованию Ресурса MachineLearning.ru в учебном процессе.  | 
Алгоритм AnyBoost - класс алгоритмов, представляющих бустинг как процесс градиентного спуска. В основе алгоритма лежит последовательное уточнение функции, представляющей собой линейную комбинацию базовых классификаторов, с тем чтобы минимизировать функцию потерь. В класс AnyBoost входят практически все алгоритмы бустинг как частные случаи.
Содержание | 
Описание алгоритма
Алгоритм AnyBoost
Рассмотрим задачу классификации. Пусть   - множество базовых классификаторов, а 
  - множество всех линейных комбинаций из 
. 
На каждом шаге алгоритма к текущему классификатору 
 прибавляется базовый классификатор так, чтобы значение 
 уменьшилось на некоторое значение 
. То есть в терминах функционального пространства для функции 
 ищется направление, в котором функция 
 быстрее уменьшается. Наибольшее уменьшение функции потерь наблюдается в случае, когда 
 максимизирует величину 
.
-  Инициализация 
;
 -  Для всех 
пока не выполнено условие выхода из цикла;
-  Получение нового классификатора 
, увеличивающего значение
;
 -  Если 
выходим из цикла и возвращаем
;
 -  Выбор веса 
 -  Уточнение классификатора 
 
 -  Получение нового классификатора 
 -  Возвращаем 
 
В случае бинарного классификатора .
 - обучающая выборка.
Функция потерь 
 определяется через дифференцируемую функцию выброса 
.
В этом случае 
, и нахождение классификатора на каждом шаге будет равносильно нахождению классификатора 
, минимизирующего взвешенную ошибку.
Методы голосования как частный случай AnyBoost
| Алгоритм | Функция потерь | Размер шага | 
|---|---|---|
| AdaBoost | Линейный поиск | |
| ARC-X4 | ||
| ConfidenceBoost | Линейный поиск | |
| LogitBoost | Метод Ньютона | 
Достоинства
Недостатки
См. также
Литература
- Mason L., Baxter J., Bartlett P., Frean M. Boosting algorithms as gradient descent. — Advances in Neural Information Processing Systems. — MIT Press, 2000. — T. 12. — 512--518 с.
 - Mason L., Baxter J., Bartlett P., Frean M. Functional Gradient Techniques for Combining Hypotheses. — Advances in Large Margin Classifiers. — MIT Press, 1999. — T. 12. — 221--246 с.
 

