Глубинное обучение (курс лекций)/2020
Материал из MachineLearning.
(Различия между версиями)
(→Lectures and seminars) |
(→Lectures and seminars) |
||
| Строка 46: | Строка 46: | ||
[https://github.com/nadiinchi/dl_labs/blob/master/lab_pytorch.ipynb ipynb 3] | [https://github.com/nadiinchi/dl_labs/blob/master/lab_pytorch.ipynb ipynb 3] | ||
|- | |- | ||
| - | | 02 Oct. 2020 || align="center"| 4 || Semantic image segmentation || [https://yadi.sk/d/jel16JzCmHLgBQ Presentation (pdf)]<br>[https://portrait.nizhib.ai/ Portrait Demo] ([https://github.com/nizhib/portrait-demo source]) | + | | 02 Oct. 2020 || align="center"| 4 || Semantic image segmentation. || [https://yadi.sk/d/jel16JzCmHLgBQ Presentation (pdf)]<br>[https://portrait.nizhib.ai/ Portrait Demo] ([https://github.com/nizhib/portrait-demo source]) |
|- | |- | ||
| - | | 09 Oct. 2020 || align="center"| 5 || Object detection || [https://yadi.sk/i/vmJJgDAAvtY6Pw Presentation (pdf)]<br>[https://yadi.sk/i/5gLFLx1R7Qfjjg DS Bowl 2018 (pdf)] | + | | 09 Oct. 2020 || align="center"| 5 || Object detection. || [https://yadi.sk/i/vmJJgDAAvtY6Pw Presentation (pdf)]<br>[https://yadi.sk/i/5gLFLx1R7Qfjjg DS Bowl 2018 (pdf)] |
|- | |- | ||
| 16 Oct. 2020 || align="center"| 6 || Neural style transfer. || [https://yadi.sk/i/Hp9wbpaIEHz_pw Presentation] | | 16 Oct. 2020 || align="center"| 6 || Neural style transfer. || [https://yadi.sk/i/Hp9wbpaIEHz_pw Presentation] | ||
| Строка 54: | Строка 54: | ||
| 23 Oct. 2020 || align="center"| 7 || Recurrent neural networks. || [https://drive.google.com/file/d/1KvSzzctOjRhYwJH_9LJJeZhMp4USTcDV/view?usp=sharing Presentation] | | 23 Oct. 2020 || align="center"| 7 || Recurrent neural networks. || [https://drive.google.com/file/d/1KvSzzctOjRhYwJH_9LJJeZhMp4USTcDV/view?usp=sharing Presentation] | ||
|- | |- | ||
| + | | 30 Oct. 2020 || align="center"| 8 || Recurrent neural networks memory and attention mechanisms. || | ||
|- | |- | ||
| - | | 20 Nov. 2020 || align="center"| | + | | 06 Nov. 2020 || align="center"| 9 || Reinforcement learning. Q-learning. DQN model. || |
| + | |- | ||
| + | | rowspan="2"|13 Nov. 2020 || rowspan="2" align="center"| 10 || Policy gradient in reinforcement learning. REINFORCE and A2C algorithms. || | ||
| + | |- | ||
| + | | Reinforcement learning implementation and multi-armed bandits. || [https://github.com/nadiinchi/dl_labs/blob/master/lab_reinforcement_en.ipynb RL notebook]<br>[https://www.youtube.com/watch?v=kopoLzvh5jY Multi-Agent Hide and Seek video]<br>[https://github.com/nadiinchi/dl_labs/blob/master/lab_bandits.ipynb Bandits notebook]<br>[https://learnforeverlearn.com/bandits/ Bayesian Bandit Explorer] | ||
| + | |- | ||
| + | | 20 Nov. 2020 || align="center"| 11 || Generative adversarial networks. || [https://yadi.sk/i/wNmNOSipwhRbWQ Part1] [https://yadi.sk/i/s5goIhh_0WxLwg Part2] | ||
|- | |- | ||
|} | |} | ||
Версия 11:53, 24 ноября 2020
This is an introductory course on deep learning models and their application for solving different applied problems of image and text analysis.
Instructors: Dmitry Kropotov, Victor Kitov, Nadezhda Chirkova, Oleg Ivanov and Evgeny Nizhibitsky.
The timetable in Autumn 2020: Fridays, lectures begin at 10-30, seminars begin at 12-15, zoom-link
Lectures and seminars video recordings: link
Anytask invite code: ldQ0L2R
Course chat in Telegram: link
Rules and grades
TBA
Lectures and seminars
| Date | No. | Topic | Materials |
|---|---|---|---|
| 11 Sep. 2020 | 1 | Introduction. Fully-connected networks. | |
| Matrix calculus, automatic differentiation. | Synopsis | ||
| 18 Sep. 2020 | 2 | Stochastic optimization for neural networks, drop out, batch normalization. | |
| Convolutional neural networks, basic architectures. | Presentation | ||
| 25 Sep. 2020 | 3 | Pytorch and implementation of convolutional neural networks. | ipynb 1 ipynb 2 |
| 02 Oct. 2020 | 4 | Semantic image segmentation. | Presentation (pdf) Portrait Demo (source) |
| 09 Oct. 2020 | 5 | Object detection. | Presentation (pdf) DS Bowl 2018 (pdf) |
| 16 Oct. 2020 | 6 | Neural style transfer. | Presentation |
| 23 Oct. 2020 | 7 | Recurrent neural networks. | Presentation |
| 30 Oct. 2020 | 8 | Recurrent neural networks memory and attention mechanisms. | |
| 06 Nov. 2020 | 9 | Reinforcement learning. Q-learning. DQN model. | |
| 13 Nov. 2020 | 10 | Policy gradient in reinforcement learning. REINFORCE and A2C algorithms. | |
| Reinforcement learning implementation and multi-armed bandits. | RL notebook Multi-Agent Hide and Seek video Bandits notebook Bayesian Bandit Explorer | ||
| 20 Nov. 2020 | 11 | Generative adversarial networks. | Part1 Part2 |

