Глубинное обучение (курс лекций)/2020
Материал из MachineLearning.
(Различия между версиями)
												
			
			 (Новая: __NOTOC__ This is an introductory course on deep learning models and their application for solving different applied problems of image and text analysis.  '''Instructors''': [[Участ...)  | 
				|||
| Строка 35: | Строка 35: | ||
 !Date !! No. !! Topic !! Materials  |  !Date !! No. !! Topic !! Materials  | ||
 |-  |  |-  | ||
| - |  |   | + |  | rowspan="2"|11 Sep. 2020 || rowspan="2"|1 || Introduction. Fully-connected networks. ||   | 
 |-  |  |-  | ||
| - | + |  | Matrix calculus, automatic differentiation. ||  [https://drive.google.com/file/d/1Yu790uIPyxp9JIyysxfJDor_LJQu83gQ/view?usp=sharing Synopsis]  | |
 |}  |  |}  | ||
Версия 19:21, 15 сентября 2020
This is an introductory course on deep learning models and their application for solving different applied problems of image and text analysis.
Instructors: Dmitry Kropotov, Victor Kitov, Nadezhda Chirkova, Oleg Ivanov and Evgeny Nizhibitsky.
The timetable in Autumn 2020: Fridays, lectures begin at 10-30, seminars begin at 12-15, zoom-link
Lectures and seminars video recordings: link
Anytask invite code: ldQ0L2R
For questions: [course chat in Telegram]
Rules and grades
TBA
Lectures and seminars
| Date | No. | Topic | Materials | 
|---|---|---|---|
| 11 Sep. 2020 | 1 | Introduction. Fully-connected networks. | |
| Matrix calculus, automatic differentiation. | Synopsis | 

