Биномиальное распределение
Материал из MachineLearning.
м  (→Нормальное приближение)  | 
			|||
| Строка 35: | Строка 35: | ||
===Нормальное приближение===  | ===Нормальное приближение===  | ||
| - | Приближение нормальным распределением   | + | Приближение нормальным распределением используется в ситуациях, когда <tex>n\to\infty</tex>, а <tex>p</tex> фиксировано. Это приближение можно рассматривать как частный случай центральной предельной теоремы, применение которой основано на представлении <tex>X</tex> в виде суммы <tex>n</tex> слагаемых. Приближение основано на том, что при указанных условиях распределение нормированной величины  | 
<tex>X'=\frac{X-MX}{\sqrt{DX}}=\frac{X-np}{\sqrt{npq}</tex>, где <tex>q=1-p</tex>  | <tex>X'=\frac{X-MX}{\sqrt{DX}}=\frac{X-np}{\sqrt{npq}</tex>, где <tex>q=1-p</tex>  | ||
Версия 10:05, 3 ноября 2009
Содержание | 
Определение
Биномиальное распределение - дискретное распределение вероятностей случайной величины , принимающей целочисленные значения 
 с вероятностями:
.
Данное распределение характеризуется двумя параметрами: целым числом , называемым числом испытаний, и вещественным числом 
, 
, называемом вероятностью успеха в одном испытании. Биномиальное распределение - одно из основных распределений вероятностей, связанных с последовательностью независимых испытаний. Если проводится серия из 
 независимых испытаний, в каждом из которых может произойти "успех" с вероятностью 
, то случайная величина, равная числу успехов во всей серии, имеет указанное распределение. Эта величина также может быть представлена в виде суммы 
 независимых слагаемых, имеющих распределение Бернулли.
Основные свойства
- Математическое ожидание: 
 - Дисперсия: 
 - Асимметрия: 
; при
распределение симметрично относительно центра
 
Асимптотические приближения при больших n
Если значения  велики, то непосредственное вычисление вероятностей событий, связанных с данной случайной величиной, технически затруднительно.
В этих случаях можно использовать приближения биномиального распределения распределением Пуассона и нормальным (приближение Муавра-Лапласа).
Приближение Пуассона
Приближение распределением Пуассона применяется в ситуациях, когда значения  большие, а значения 
 близки к нулю. При этом биномиальное распределение аппроксимируется распределением Пуассона с параметром 
. 
Строгая формулировка: если  и 
 таким образом, что 
, то 
Более того, справедлива следующая оценка. Пусть  - случайная величина, имеющая распределение Пуассона с параметром 
. 
Тогда для произвольного множества 
 справедливо неравенство:
Доказательство и обзор более точных результатов, касающихся точности данного приближения, можно найти в [1, гл. III, §12].
Нормальное приближение
Приближение нормальным распределением используется в ситуациях, когда , а 
 фиксировано. Это приближение можно рассматривать как частный случай центральной предельной теоремы, применение которой основано на представлении 
 в виде суммы 
 слагаемых. Приближение основано на том, что при указанных условиях распределение нормированной величины
, где 
близко к стандартному нормальному.
Локальная теорема Муавра-Лапласа
Данная теорема используется для приближенного вычисления вероятностей отдельных значений биномиального распределения. Она утверждает [1, гл. I, §6], что равномерно по всем значениям , таким что 
, имеет место
 где 
 - плотность стандартного нормального распределения.
Интегральная теорема Муавра-Лапласа
Литература
1. Ширяев А.Н. Вероятность. — М.: МЦНМО, 2004.
Ссылки
- Биномиальное распределение (Википедия)
 - Binomial distribution (Wikipedia)
 

