Метод Парзеновского окна (пример)
Материал из MachineLearning.
 (→Постановка задачи разделения классов методом парзеновского окна)  | 
			|||
| Строка 1: | Строка 1: | ||
'''Метод Парзеновского окна''' принадлежит к непараметрическим методам классификации и представляет собой одну из возможных реализаций байесовского подхода к решению задачи классификации.  | '''Метод Парзеновского окна''' принадлежит к непараметрическим методам классификации и представляет собой одну из возможных реализаций байесовского подхода к решению задачи классификации.  | ||
== Постановка задачи разделения классов методом парзеновского окна ==  | == Постановка задачи разделения классов методом парзеновского окна ==  | ||
| + | Пусть у нас задана выборка <tex>\{(\mathbf{x}_i,y_i)\}_{i=1}^m</tex>, где <tex>X^m</tex> = <tex>\{\mathbf{x}_i\}_{i=1}^m</tex> - множество объектов, а <tex>Y^m</tex> = <tex>\{\mathbf{y}_i\}_{i=1}^m</tex> - множество объектов на этих ответах. Кроме того, задан объект <tex>x_0</tex>б который небоходимо классифицировать методом парзеновского окна.  | ||
| + | Задача состоит в том, что бы подобрать параметр <tex>h</tex> - ширину окна и тип ядра таким образом,что бы при классификации с помощью метода парзеновского окна ошибок было бы как можно меньше:  | ||
| + | <center><tex>a(x;X^{l},h)=\arg \max_{y\in Y} \lambda_{y} \sum_{i=1}^l {[}y_i = y{]} K(\frac{p(x,x_i)}{h})</tex></center>  | ||
== Вычислительный эксперимент ==  | == Вычислительный эксперимент ==  | ||
Версия 10:17, 19 мая 2009
Метод Парзеновского окна принадлежит к непараметрическим методам классификации и представляет собой одну из возможных реализаций байесовского подхода к решению задачи классификации.
Содержание | 
Постановка задачи разделения классов методом парзеновского окна
Пусть у нас задана выборка , где 
 = 
 - множество объектов, а 
 = 
 - множество объектов на этих ответах. Кроме того, задан объект 
б который небоходимо классифицировать методом парзеновского окна.
Задача состоит в том, что бы подобрать параметр 
 - ширину окна и тип ядра таким образом,что бы при классификации с помощью метода парзеновского окна ошибок было бы как можно меньше:
Вычислительный эксперимент
Исходный код
Скачать листинги алгоритмов можно здесь parzenclassification.m,slidingcontrol.m,fqual.m
Смотри также
Литература
- К. В. Воронцов, Лекции по линейным алгоритмам классификации
 
|   |  Данная статья является непроверенным учебным заданием.
 До указанного срока статья не должна редактироваться другими участниками проекта MachineLearning.ru. По его окончании любой участник вправе исправить данную статью по своему усмотрению и удалить данное предупреждение, выводимое с помощью шаблона {{Задание}}. См. также методические указания по использованию Ресурса MachineLearning.ru в учебном процессе.  | 

