Критерий Зигеля-Тьюки
Материал из MachineLearning.
 (→Примеры задач)  | 
				 (→Описание критерия)  | 
			||
| Строка 15: | Строка 15: | ||
==Описание критерия==  | ==Описание критерия==  | ||
Даны две выборки: <tex>x^m = (x_1,\ldots,x_m),\; x_i \in \mathbb{R};\;\; y^n = (y_1,\ldots,y_n),\; y_i \in \mathbb{R}</tex>.  | Даны две выборки: <tex>x^m = (x_1,\ldots,x_m),\; x_i \in \mathbb{R};\;\; y^n = (y_1,\ldots,y_n),\; y_i \in \mathbb{R}</tex>.  | ||
| - | Через <tex>H_0</tex> обозначим следующую гипотезу: <tex>  | + | Через <tex>H_0</tex> обозначим следующую гипотезу: разброс <tex>x^m</tex> и <tex>y^n</tex> одинаков.  | 
Составим объединённую упорядоченную выборку  | Составим объединённую упорядоченную выборку  | ||
::<tex>z_1,z_2,\dots,z_{m+n}</tex>  | ::<tex>z_1,z_2,\dots,z_{m+n}</tex>  | ||
Версия 13:34, 11 января 2011
Критерий Зигеля-Тьюки является ранговым критерием, предназначенным для проверки принадлежности двух независимых выборок к общей генеральной совокупности с одинаковыми характеристиками рассеяния.
Содержание | 
Примеры задач
Пусть на некотором предприятии два подразделения выполняют одну и ту же работу, но на оборудовании различных производителей. Каждому подразделению соответствует выборка, состоящая из рабочих этого подразделения. Каждое значение в выборке - это числовая оценка производительности данного рабочего. Требуется определить, даёт ли использование одного оборудования лучший результат по сравнению с оборудованием другого производителя.
Другой пример: предположим, существует два альтернативных агротехнических метода обработки полей. Для каждого такого метода составим выборку из обработанных им полей. Значение в выборке равно урожайности данного поля. Требуется найти наиболее эффективный метод.
Описание критерия
Даны две выборки: .
Через 
 обозначим следующую гипотезу: разброс 
 и 
 одинаков.
Составим объединённую упорядоченную выборку
и составим из неё новую последовательность вида
,
т.е. оставшийся ряд "переворачивается" после приписывания рангов очередной паре крайних значений.
Ранги, присвоенные в этой последовательности элементам проверяемых выборок, обозначим через .
Вычислим теперь статистику Манна-Уитни:
.
Гипотеза  принимается, если 
, 
где 
 есть 
-квантиль табличного распределения Уилкоксона-Манна-Уитни с параметрами 
.
Литература
- Кобзарь А. И. Прикладная математическая статистика. — М.: Физматлит, 2006. — 816 с.
 
См. также
Ссылки
- Siegel-Tukey test(Wikipedia)
 

