Коэффициент корреляции Пирсона
Материал из MachineLearning.
(Различия между версиями)
												
			
			 (→См. также)  | 
				 (→Определение)  | 
			||
| Строка 7: | Строка 7: | ||
<tex>x=\left( x_1, \cdots ,x_n  \right), \; y=\left( y_1, \cdots ,y_n  \right) </tex>;    | <tex>x=\left( x_1, \cdots ,x_n  \right), \; y=\left( y_1, \cdots ,y_n  \right) </tex>;    | ||
| - | Коэффициент корреляции   | + | Коэффициент корреляции Пирсона рассчитывается по формуле:     | 
<tex>r_{xy} = \frac {\sum_{i=1}^{n} \left( x_i-\bar{x} \right)\left( y_i-\bar{y} \right)}{\sqrt{\sum_{i=1}^{n} \left( x_i-\bar{x} \right)^2 \sum_{i=1}^{n} \left( y_i-\bar{y} \right)^2}} = \frac {cov(x,y)}{\sqrt{S_x^2S_y^2}} </tex>   | <tex>r_{xy} = \frac {\sum_{i=1}^{n} \left( x_i-\bar{x} \right)\left( y_i-\bar{y} \right)}{\sqrt{\sum_{i=1}^{n} \left( x_i-\bar{x} \right)^2 \sum_{i=1}^{n} \left( y_i-\bar{y} \right)^2}} = \frac {cov(x,y)}{\sqrt{S_x^2S_y^2}} </tex>   | ||
Версия 15:34, 10 января 2009
 
  | 
Определение
Коэффициент корреляции Пирсона характеризует существование линейной зависимости между двумя величинами.
Даны две выборки
;  
Коэффициент корреляции Пирсона рассчитывается по формуле:
 
где
 - средние значения выборок x и y;
 - среднеквадратичные отклонения;
 − называют также теснотой линейной связи. 
, тогда
- линейно зависимы.
, тогда
- линейно независимы.
Статистическая проверка наличия корреляции
Гипотеза : Отсутствие линейной связи 
Статистика критерия:
 - Распределение Стьюдента с 
 степенями свободы.
Слабые стороны
- Неустойчивость к выбросам;
 
- С помощью коэффициента корреляции можно определить линейную зависимость между величинами, другие взаимосвязи выявляются методами регрессионного анализа;
 
- Необходимо понимать различие понятий "независимость" и "некоррелированность". Из первого следует второе, но не наоборот.
 
Для того, чтобы выяснить отношение между двумя переменными, часто необходимо избавиться от влияния третьей переменной. Рассмотрим пример 3-х переменных: x,y,z. Исключим влияние переменной z:
Для исключения влияния большего числа переменных:
, где 
 - гл. минор матрицы коэффициентов корреляции переменных 
;

