Сравнение временных рядов при авторегрессионном прогнозе (пример)
Материал из MachineLearning.
 (→Вычислительный эксперимент)  | 
				 (→Литература)  | 
			||
| Строка 92: | Строка 92: | ||
|издательство = ВЦ РАН  | |издательство = ВЦ РАН  | ||
|год          = 2010  | |год          = 2010  | ||
| + | }}  | ||
| + | # {{книга  | ||
| + | |автор        = Keogh E. J., Pazzani M. J.  | ||
| + | |заглавие     = Derivative Dynamic Time Warping  | ||
| + | |издательство = International Conference on Data Mining  | ||
| + | |гордо        = Chicago  | ||
| + | |год          = 2001  | ||
}}  | }}  | ||
Версия 17:23, 21 декабря 2010
Содержание | 
Аннотация
Временным рядом называется последовательность упорядоченных по времени значений некоторой вещественной переменной . Элемент последовательности называется отсчетом временного ряда.
Задача авторегрессионного прогноза заключается в нахождении модели , где 
 вектор параметров модели, которая наилучшим образом приближает следущее значение временного ряда 
.
Свертка временного ряда возникает в случае существования на множестве подпоследовательностей временного ряда некоторого инварианта. Примером инварианта является период временного ряда, который физически может означать сезонность в данных. При этом построенная модель должна учитывать наличие инварианта и сохранять данное свойство для ряда прогнозов: 
.
Постановка задачи
Пусть задан временной ряд . Предполагается, что отсчеты 
 были сделаны через равные промежутки времени, и период временного ряда равен 
, при этом 
, где 
.
Задана модель  
,где случайная величина 
 имеет нормальное распределение 
. Вектор параметров модели 
 рассматривается как многомерная случайная величина. Пусть плотность распределения параметров имеет вид многомерного нормального распределения 
 с матрицей ковариации 
. Модель некоторым образом учитывает период временного ряда.
Предполагается, модель временного ряда может меняться с течением времени, т.е. для разных подпоследовательностей длины 
 оптимальные параметры модели 
 будут отличаться. Расстояние между различными подпоследовательностями 
 и 
 измеряется как сумма квадратов отклонений: 
Расстояние между параметрами модели , настроенной на разных подпоследовательностях, можно измерить как расстояние Кульбака-Лейблера между функциями распределения 2-ух случайных величин 
:
Требуется исследовать зависимость расстояния между параметрами модели  от расстояния между подпоследовательностями, на которых эти параметры были настроены.
Алгоритм
Для настройки параметров модели  используется связный байесовский вывод
где  — функция ошибки,
 — матрица Гессе функции ошибок,
 — функция ошибки в пространстве данных.
Настройка параметрической регрессионной модели происходит в 2 этапа, сначала настраиваются параметры  при фиксированных гиперпараметрах 
, затем при вычисленных значениях параметров функция правдоподобия 
 оптимизируется по гиперпараметрам. Процедура повторяется, пока настраиваемые параметры не стабилизируется.
Для простоты вычислений, считаем, что имеет диагональный вид:
.
Вычислительный эксперимент
Вычислительный эксперимент проводился на реальных данных. Использовались временные ряды потребления электроэнергии в некотором регионе с отсчетами 1 час, период ряда равен . 
Эксперимент состоит из этапов:
1) из множества порождающих моделей:
 
была построена их суперпозиция, описывающая потребление электроэнергии за сутки:
2) модель настраивается на подпоследовательности
, 
где  - номер суток. В результате получаем набор оптимальных параметров и гиперпараметров модели, оптимальных для данной подпоследовательности: 
3) строится зависимость расстояния между последовательностями в пространстве параметров:
и расстояний в пространстве значений:
Исходный код
Смотри также
Литература
- Стрижов В.В, Пташко Г.О. Построение инвариантов на множестве временных рядов путем динамической свертки свободной переменной. — ВЦ РАН, 2009.
 - Стрижов В.В Методы выбора регрессионных моделей. — ВЦ РАН, 2010.
 - Keogh E. J., Pazzani M. J. Derivative Dynamic Time Warping. — International Conference on Data Mining, 2001.
 

