Сравнение временных рядов при авторегрессионном прогнозе (пример)
Материал из MachineLearning.
 (→Постановка задачи)  | 
				 (→Алгоритм)  | 
			||
| Строка 38: | Строка 38: | ||
\right).  | \right).  | ||
</tex>  | </tex>  | ||
| - | Если зафиксировать набор порождающих функций <tex>\{\phi_i\}_{i=1}^u-</tex>, то возникает задача линейной регрессии, которую можно решать несколькими способами. Так как за счет большого количества порождающих функций у нас появится огромное количество признаков то наиболее подходящими будут методы, проводящие отбор признаков: [[ридж-регрессия|гребневая регрессия]], [[лассо|лассо]], [[шаговая регрессия|шаговая регрессия]], метод наименьших   | + | Если зафиксировать набор порождающих функций <tex>\{\phi_i\}_{i=1}^u-</tex>, то возникает задача линейной регрессии, которую можно решать несколькими способами. Так как за счет большого количества порождающих функций у нас появится огромное количество признаков то наиболее подходящими будут методы, проводящие отбор признаков: [[ридж-регрессия|гребневая регрессия]], [[лассо|лассо]], [[шаговая регрессия|шаговая регрессия]], метод наименьших углов(ЛАРС).  | 
== Вычислительный эксперимент ==  | == Вычислительный эксперимент ==  | ||
Версия 00:03, 9 декабря 2010
Содержание | 
Аннотация
Временным рядом называется последовательность упорядоченных по времени значений некоторой вещественной переменной . Элемент последовательности называется отсчетом временного ряда.
Задача авто регрессионного прогноза заключается в нахождении модели , где 
 вектор параметров модели, которая наилучшим образом приближает следущее значение временного ряда 
.
Свертка временного ряда возникает в случае существования на множестве подпоследовательностей временного ряда некоторого инварианта. Примером инварианта является период временного ряда, который физически может означать сезонность в данных. При этом построенная модель должна учитывать наличие инварианта и сохранять данное свойство для ряда прогнозов: 
.
Постановка задачи
Пусть задан временной ряд . Предполагается, что отсчеты 
 были сделаны через равные промежутки времени, и период временного ряда равен 
, при этом 
, где 
. 
Требуется спрогнозировать следующий отсчет временного ряда 
.
Построим матрицу  
. 
Модель имеет вид , где 
, а 
 набор порождающих функций.
Алгоритм
В терминах поставленной задачи следует решить следующую задачу оптимизации: , где
Если зафиксировать набор порождающих функций 
, то возникает задача линейной регрессии, которую можно решать несколькими способами. Так как за счет большого количества порождающих функций у нас появится огромное количество признаков то наиболее подходящими будут методы, проводящие отбор признаков: гребневая регрессия, лассо, шаговая регрессия, метод наименьших углов(ЛАРС).

