Фоновая поправка в анализе ДНК-микрочипов
Материал из MachineLearning.
м |
м |
||
Строка 1: | Строка 1: | ||
Фоновая поправка - важный предварительный этап в анализе [[ДНК-микрочип]]ов. Его необходимость связана с наличием таких мешающих факторов, как шум оптической системы распознавания и неспецифическая гибридизация. | Фоновая поправка - важный предварительный этап в анализе [[ДНК-микрочип]]ов. Его необходимость связана с наличием таких мешающих факторов, как шум оптической системы распознавания и неспецифическая гибридизация. | ||
- | + | ||
Изначально для анализа фонового эффекта была разработана система так называемых PM-MM проб. Помимо нуклеотидных зондов, в точности соответствующих последовательности каждого рассматриваемого гена (Perfect Match probes), на микрочипах Affymetrix GeneChip размещались зонды, в которых средний (тринадцатый) олигонуклеотид был заменён на комплементарный (Mismatch probe). Предполагалось, что по интенсивности MM-проб можно будет оценить эффект неспецифической гибридизации и вычесть его из интенсивности PM-проб. Этот подход сразу же продемонстрировал свою несостоятельность - было показано, что в среднем для ДНК-микрочипа интенсивность около 30% MM-проб превышает интенсивность соответствующих им PM-проб<ref name="notMM">Naef F, Lim DA, Patil N, Magnasco MO. From features to expression: High-density oligonucleotide array analysis revisited. 2001. http://arxiv.org/abs/physics/0102010/.</ref>. Из-за этого вычитание интенсивностей MM-проб приводит к бессмысленному результату, поскольку экспрессия гена оказывается отрицательной. | Изначально для анализа фонового эффекта была разработана система так называемых PM-MM проб. Помимо нуклеотидных зондов, в точности соответствующих последовательности каждого рассматриваемого гена (Perfect Match probes), на микрочипах Affymetrix GeneChip размещались зонды, в которых средний (тринадцатый) олигонуклеотид был заменён на комплементарный (Mismatch probe). Предполагалось, что по интенсивности MM-проб можно будет оценить эффект неспецифической гибридизации и вычесть его из интенсивности PM-проб. Этот подход сразу же продемонстрировал свою несостоятельность - было показано, что в среднем для ДНК-микрочипа интенсивность около 30% MM-проб превышает интенсивность соответствующих им PM-проб<ref name="notMM">Naef F, Lim DA, Patil N, Magnasco MO. From features to expression: High-density oligonucleotide array analysis revisited. 2001. http://arxiv.org/abs/physics/0102010/.</ref>. Из-за этого вычитание интенсивностей MM-проб приводит к бессмысленному результату, поскольку экспрессия гена оказывается отрицательной. | ||
- | Чтобы нейтрализовать | + | Ниже рассмотрены алгоритмы следующих поколений, делающие более изощрённую фоновую поправку. |
+ | |||
+ | == Ideal mismatch == | ||
+ | Чтобы нейтрализовать эффект отрицательных значений экспрессии при вычитании интенсивности MM-проб, компанией Affymetrix была разработана концепция Ideal Mismatch<ref name="affIM">Affymetrix. Statistical algorithms reference guide. Technical report, Affymetrix, Santa Clara, CA, 2001. http://www.affymetrix.com/support/technical/technotes/statistical_reference_guide.pdf</ref>. Идея заключается в том, чтобы делать обычную PM-MM коррекцию там, где это возможно, а в остальных случаях вычитать из интенсивности PM-проб некоторую величину, меньшую интенсивности MM-проб. Для каждого множества проб, соответствующих одному участку ДНК, вычисляется значение специфической фоновой интенсивности <tex>SB</tex>, представляющее собой одношаговое [[Взвешенное среднее Тьюки|взвешенное среднее Тьюки]] по множеству логарифмов отношений PM-интенсивностей к MM-интенсивностям в каждой паре проб. Если <tex>i</tex> - номер пробы, а <tex>k</tex> - номер подмножества проб, то фоновый эффект оценивается следующим выражением: | ||
::<tex>IM_i^{(k)} = \left\{MM_i^{(k)}, \:\:\: MM_i^{(k)}<PM_i^{(k)},\\ \frac{PM_i^{(k)}}{2^{SB_k}}, \:\:\: MM_i^{(k)}\geq PM_i^{(k)}, \: SB_k>\tau_c, \\ \frac{PM_i^{(k)}}{2^{\tau_c/(1+(\tau_c-SB_k)/\tau_s)}}, \:\:\: MM_i^{(k)}\geq PM_i^{(k)}, \: SB_k\leq\tau_c, \right.</tex> | ::<tex>IM_i^{(k)} = \left\{MM_i^{(k)}, \:\:\: MM_i^{(k)}<PM_i^{(k)},\\ \frac{PM_i^{(k)}}{2^{SB_k}}, \:\:\: MM_i^{(k)}\geq PM_i^{(k)}, \: SB_k>\tau_c, \\ \frac{PM_i^{(k)}}{2^{\tau_c/(1+(\tau_c-SB_k)/\tau_s)}}, \:\:\: MM_i^{(k)}\geq PM_i^{(k)}, \: SB_k\leq\tau_c, \right.</tex> |
Версия 14:32, 17 мая 2010
Фоновая поправка - важный предварительный этап в анализе ДНК-микрочипов. Его необходимость связана с наличием таких мешающих факторов, как шум оптической системы распознавания и неспецифическая гибридизация.
Изначально для анализа фонового эффекта была разработана система так называемых PM-MM проб. Помимо нуклеотидных зондов, в точности соответствующих последовательности каждого рассматриваемого гена (Perfect Match probes), на микрочипах Affymetrix GeneChip размещались зонды, в которых средний (тринадцатый) олигонуклеотид был заменён на комплементарный (Mismatch probe). Предполагалось, что по интенсивности MM-проб можно будет оценить эффект неспецифической гибридизации и вычесть его из интенсивности PM-проб. Этот подход сразу же продемонстрировал свою несостоятельность - было показано, что в среднем для ДНК-микрочипа интенсивность около 30% MM-проб превышает интенсивность соответствующих им PM-проб[1]. Из-за этого вычитание интенсивностей MM-проб приводит к бессмысленному результату, поскольку экспрессия гена оказывается отрицательной.
Ниже рассмотрены алгоритмы следующих поколений, делающие более изощрённую фоновую поправку.
Содержание |
Ideal mismatch
Чтобы нейтрализовать эффект отрицательных значений экспрессии при вычитании интенсивности MM-проб, компанией Affymetrix была разработана концепция Ideal Mismatch[1]. Идея заключается в том, чтобы делать обычную PM-MM коррекцию там, где это возможно, а в остальных случаях вычитать из интенсивности PM-проб некоторую величину, меньшую интенсивности MM-проб. Для каждого множества проб, соответствующих одному участку ДНК, вычисляется значение специфической фоновой интенсивности , представляющее собой одношаговое взвешенное среднее Тьюки по множеству логарифмов отношений PM-интенсивностей к MM-интенсивностям в каждой паре проб. Если - номер пробы, а - номер подмножества проб, то фоновый эффект оценивается следующим выражением:
Здесь и - настраиваемые параметры: - константа различия со значением по умолчанию 0.03, - константа масштабирования со значением по умолчанию 10, - одношаговое взвешенное среднее Тьюки с параметрами
Итоговое значение интенсивности для PM-проб с учётом фоновой поправки получается вычитанием из исходных значений интенсивностей PM-проб соответствующей им величины .
RMA (Robust Multichip Average)
Данный метод фоновой коррекции является частью комплекса RMA методов для предобработки данных ДНК-микрочипов[1]. Используются только данные PM-проб. Значения интенсивности по ним корректируются отдельно по каждому микрочипу с использованием следующей модели распределения интенсивностей проб. Нескорректированное значение интенсивности представляется в виде суммы нормально распределённого шума со средним и дисперсией и экспоненциально распределённого сигнала со средним значением . Чтобы исключить возможность получения отрицательных значений интенсивности, рассматривается только неотрицательная часть нормального распределения шума. Оценка сигнала строится согласно следующей формуле:
где и — соответственно функция распределения и плотность стандартного нормального распределения. Оценки параметров в алгоритме RMA строятся следующим образом. Пусть — плотность распределения интенсивностей на микрочипе, тогда
- — мода распределения интенсивностей;
- — мода интенсивностей, меньших ;
- — выборочное стандартное отклонение интенсивностей, меньших , умноженное на ;
- .
Использование таких ad hoc оценок объясняется невозможностью построить оценки более привычными методами: численные оценки методом максимального правдоподобия дают нестабильный результат, EM-алгоритм работает слишком медленно из-за большого объёма данных[1]. В то же время, в работе McGee, Chen, 2006[1] показано, что оценки параметров, используемые в RMA, далеки от оптимальных, и предложен ряд других способов построения оценок.
DFCM (Distribution Free Convolution Model)
В рамках данной модели, как и в модели алгоритма RMA, предполагается, что наблюдаемая интенсивность является суммой сигнала и шума: ; однако, в отличие от RMA, не делается никаких предположений о распределениях компонент[1]. Алгоритм учёта фоновой поправки следующий.
- Выделяются наименьшие процентов значений PM-интенсивностей (обычно доля достаточно мала и не превышает 30%).
- Выделяются наименьшие процентов (обычно 90% или 95%) значений MM-интенсивностей проб, соответствующих PM-пробам, отобранным на предыдущем шаге. Отобранные значения интенсивностей MM-проб далее служат мерой фонового шума.
- С использованием непараметрической оценки плотности распределения шума (как правило, ядерной оценки Епачечникова), ищется мода распределения шума .
- Оценкой стандартного отклонения шума служит — выборочное стандартное отклонения шума со значениями интенсивностей, меньших , умноженное на .
- Значение интенсивности -й пробы в -м наборе проб, соответствующих одному гену, рассчитывается по следующей формуле:
где — минимальное значение интенсивности (PM или MM проб).
Выбирая значения параметров и , мы хотим отобрать те значения PM-интенсивностей, которые достаточно малы для того, чтобы пренебречь неспецифической гибридизацией MM-фрагментов к PM-зондам, а затем отобрать такие соответствующие им MM-пробы, которые, скорее всего, не подвержены кросс-гибридизации. Параметр может рассматриваться как мера доли PM-проб, соответствующим не экспрессированным генам. Любой MM-сигнал, соответствующий таким пробам, не может быть результатом неспецифической гибридизации, поскольку ген не экспрессирован. Значение параметра выбирается таким, чтобы доля MM-проб с интенсивностью большей, чем у соответствующих им PM-проб для наименьших % данных была примерно равна 50%.
MAS 5.0 (Affymetrix Micro Array Suite 5.0)
Данный метод делит каждый ДНК-микрочип на (по умолчанию 16) прямоугольных областей одинаковой площади, в каждой из которых фоновая поправка оценивается с помощью 2%-квантиля (наименьших значений) интенсивности ; оценивается также дисперсия наименьших 2% значений интенсивности . Затем фоновая поправка для каждой пробы с координатами рассчитывается как взвешенное среднее всех оценок:
- .
По аналогичной формуле с заменой на рассчитывается дисперсия фоновой поправки для каждой пробы.
Веса зависят от расстояния между пробой и центрами прямоугольных областей:
где - евклидово расстояние между пробой и центром -й ячейки, - сглаживающий коэффициент (значение по умолчанию 100).
Скорректированное значение интенсивности рассчитывается по формуле
где - исходное значение интенсивности, - параметр, соответствующий доле учитываемой вариации фоновой интенсивности (значение по умолчанию 0.5).