Фактор инфляции дисперсии
Материал из MachineLearning.
 (→Ссылки)  | 
			|||
| Строка 23: | Строка 23: | ||
==Ссылки==  | ==Ссылки==  | ||
| - | [http://en.wikipedia.org/wiki/Variance_Inflation_Factor]  | + | * [http://en.wikipedia.org/wiki/Variance_Inflation_Factor Wikipedia]  | 
==Литература==  | ==Литература==  | ||
Версия 20:51, 4 марта 2010
В задаче восстановления регрессии фактор инфляции дисперсии (VIF) — мера мультиколлинеарности . Он позволяет оценить увеличение дисперсии заданного коэффициента регрессии, происходящее из-за высокой корреляции данных.
Определение
Пусть задана выборка  откликов и признаков. Рассматривается множество линейных регрессионных моделей вида:
Предполагается, что вектор регрессионных невязок имеет нулевое математическое ожидание и дисперсию . В этом случае дисперсия 
:
 
Первая дробь связана с дисперсией невязок и дисперсией векторов признаков. Вторая — фактор инфляции дисперсии, связанный с корреляцей данного признака с другими:
где  — коэффициент детерминации:
Равенство единице фактора инфляции дисперсии говорит об ортогональности вектора значений признака остальным. Если значение  велико, то 
 — мало, то есть 
 близко к 1. Большие значения фактора инфляции дисперсии соответствуют почти линейной зависимости j-го столбца от остальных. 
Ссылки
Литература
1. Дрейпер Н., Смит Г. Прикладной регрессионный анализ. — Вильямс, 2007. — С. 487.

