Метод релевантных векторов
Материал из MachineLearning.
 (уточнение, викификация, категория)  | 
				м  (ссылки)  | 
			||
| Строка 1: | Строка 1: | ||
| - | '''Метод релевантных векторов (RVM, Relevance vector machine)''' — алгоритм [[классификация|классификации]] и восстановления [[регрессия|регрессии]], основанный на [[  | + | '''Метод релевантных векторов (RVM, Relevance vector machine)''' — алгоритм [[классификация|классификации]] и восстановления [[регрессия|регрессии]], основанный на [[Связанный Байесовский вывод|байесовском выводе второго уровня]]. В методе используется [[обобщенная линейная модель]] с введенной [[регуляризация|регуляризацией]], которая, в Байесовкой интерпретации, равносильна введению априорных распределений на вектор параметров. Главной особенностью является то, что все параметры регуляризируются независимо.  | 
== Решаемая задача ==  | == Решаемая задача ==  | ||
| Строка 88: | Строка 88: | ||
[[Категория:Байесовские методы]]  | [[Категория:Байесовские методы]]  | ||
[[Категория:Линейные классификаторы]]  | [[Категория:Линейные классификаторы]]  | ||
| - | [[Категория:  | + | [[Категория:Регрессионный анализ]]  | 
Текущая версия
Метод релевантных векторов (RVM, Relevance vector machine) — алгоритм классификации и восстановления регрессии, основанный на байесовском выводе второго уровня. В методе используется обобщенная линейная модель с введенной регуляризацией, которая, в Байесовкой интерпретации, равносильна введению априорных распределений на вектор параметров. Главной особенностью является то, что все параметры регуляризируются независимо.
Содержание | 
Решаемая задача
- Имеется выборка 
, где вектор признаков
, а целевая переменная
. Требуется для нового объекта
предсказать значение целевой переменной
 - Предполагается, что 
, где
, а
 
Подход к решению
- Следуя байесовскому подходу, воспользуемся методом максимума апостериорной плотности:
 
- Для получения разреженного решения введем в качестве априорного распределения на параметры 
нормальное распределение с диагональной матрицей ковариации с различными элементами на диагонали:
 
- Здесь 
. Такое априорное распределение соответствует независимой регуляризации вдоль каждого веса
со своим параметром регуляризации
 
- Для обучения модели (настройки параметров 
) воспользуемся идеей максимизации обоснованности:
 
Оптимизация обоснованности
-  Заметив, что обоснованность является сверткой двух нормальных распределений, можно представить подынтегральную функцию по формуле Тейлора в точке максимума правдоподобия. Обозначив 
, после некоторых преобразований получим:
 
-  Обозначив, для удобства, 
, и "в лоб" раскрывая предыдущее выражение, получим:
 
-  
,
 
-  
 
-  где 
— матрица обобщенных признаков.
 
- Теперь, приравнивая нулю производные обоснованности по 
, получим итерационные формулы для пересчета параметров:
 
- Здесь 
 
- Параметр 
можно интерпретировать как степень, в которой соответствующий вес
определяется данными или регуляризацией. Если
велико, то вес
существенно предопределен априорным распределением,
и
. С другой стороны, для малых значений
значение веса
полностью определяется данными,
.
 
Принятие решения
- Зная значения 
можно вычислить апостериорное распределение целевой переменной:
 
Обсуждение метода
- На практике процесс обучения обычно требует 20-50 итераций. На каждой итерации вычисляется 
(это требует обращения матрицы порядка
), а также пересчитываются значения
(пратктически не требует времени). Как следствие, скорость обучения падает примерно в 20-50 раз по сравнению с линейной регрессией.
 - При использовании ядровых функций в качестве обобщенных признаков необходимо проводить скользящий контроль для различных значений параметров ядра. В этом случае время обучения возрастает еще в несколько раз.
 - На выходе алгоритма получается разреженное решение, т. е. только небольшое подмножество исходной выборки входит в решающее правило.
 - Кроме значения целевой переменной, алгоритм выдает также и дисперсию прогноза.
 
Псевдокод алгоритма RVM
Вход: Обучающая выборка , матрица обобщенных признаков 
Выход: Параметры решающего правила: 
- Инициализация: 
 - для 
повторять
- для 
повторять
- если 
или
, то
 - иначе
 
 - если 
 
 
- Инициализация: 
 
См. также
Литература
- Tipping M. The relevance vector machine // Advances in Neural Information Processing Systems, San Mateo, CA. — Morgan Kaufmann, 2000.
 
|   |  Данная статья была создана в рамках учебного задания.
 
 См. также методические указания по использованию Ресурса MachineLearning.ru в учебном процессе.  | 

