Модель МакКаллока-Питтса
Материал из MachineLearning.
| Строка 1: | Строка 1: | ||
| - | Первой формальной моделью нейронных сетей (НС) была модель МакКаллока-Питтса, уточненная и развитая Клини. Впервые было установлено, что НС могут выполнять любые логические операции и вообще любые преобразования, реализуемые дискретными устройствами с конечной памятью. Эта модель легла в основу теории логических сетей и конечных автоматов и активно использовалась психологами и нейрофизиологами при моделировании некоторых локальных процессов нервной деятельности. В силу своей дискретности она вполне согласуется с компьютерной парадигмой и, более того, служит её   | + | Первой формальной моделью нейронных сетей (НС) была модель МакКаллока-Питтса, уточненная и развитая Клини. Впервые было установлено, что НС могут выполнять любые логические операции и вообще любые преобразования, реализуемые дискретными устройствами с конечной памятью. Эта модель легла в основу теории логических сетей и конечных автоматов и активно использовалась психологами и нейрофизиологами при моделировании некоторых локальных процессов нервной деятельности. В силу своей дискретности она вполне согласуется с компьютерной парадигмой и, более того, служит её «нейронным фундаментом». Но при этом она содержит существенные возможности своего расширения за счет максимального использования параметрических и пороговых свойств нейрона.   | 
=Устройство модели=  | =Устройство модели=  | ||
| Строка 11: | Строка 11: | ||
Таким образом, нейрон вычисляет n-арную булеву функцию  | Таким образом, нейрон вычисляет n-арную булеву функцию  | ||
| - | <center><tex>a(x) = \varphi(\  | + | <center><tex>a(x) = \varphi(\sum_{j=1}^m \omega_jx^j - \omega_0)</tex></center>  | 
где <tex>\varphi(z) = [z \ge 0]</tex> - ступенчатая функция Хевисайда.  | где <tex>\varphi(z) = [z \ge 0]</tex> - ступенчатая функция Хевисайда.  | ||
В теории нейронных сетей функцию φ, преобразующую значение суммарного импульса в выходное значение нейрона, принято называть функцией активации.  | В теории нейронных сетей функцию φ, преобразующую значение суммарного импульса в выходное значение нейрона, принято называть функцией активации.  | ||
| Строка 19: | Строка 19: | ||
=Достижения модели=  | =Достижения модели=  | ||
Теоретические основы нейроматематики были заложены в начале 40-х годов.  | Теоретические основы нейроматематики были заложены в начале 40-х годов.  | ||
| - | В 1943 году У.   | + | |
| + | В 1943 году У. МакКалок и его ученик У. Питтс сформулировали основные положения теории деятельности головного мозга.   | ||
Ими были получены следующие результаты:   | Ими были получены следующие результаты:   | ||
| - | *разработана модель нейрона как простейшего процессорного элемента, выполняющего вычисление переходной функции от скалярного   | + | *разработана модель нейрона как простейшего процессорного элемента, выполняющего вычисление переходной функции от скалярного произведения вектора входных сигналов и вектора весовых коэффициентов;   | 
*предложена конструкция сети таких элементов для выполнения логических и арифметических операций;   | *предложена конструкция сети таких элементов для выполнения логических и арифметических операций;   | ||
*сделано основополагающее предположение о том, что такая сеть способна обучаться, распознавать образы, обобщать полученную информацию.   | *сделано основополагающее предположение о том, что такая сеть способна обучаться, распознавать образы, обобщать полученную информацию.   | ||
=Недостатки модели=  | =Недостатки модели=  | ||
| - | + | Недостатком данной модели является сама модель нейрона «пороговой» вид переходной функции. В формализме У. Маккалока-Питтса нейроны имеют состояния 0, 1 и пороговую логику перехода из состояния в состояние. Каждый нейрон в сети определяет взвешенную сумму состояний всех других нейронов и сравнивает ее с порогом, чтобы определить свое собственное состояние.   | |
| + | |||
| + | Пороговый вид функции не предоставляет нейронной сети достаточную гибкость при обучении и настройке на заданную задачу. Если значение вычисленного скалярного произведения, даже незначительно, не достигает до заданного порога, то выходной сигнал не формируется вовсе и нейрон «не срабатывает». Это значит, что теряется интенсивность выходного сигнала (аксона) данного нейрона и, следовательно, формируется невысокое значение уровня на взвешенных входах в следующем слое нейронов.  | ||
| + | |||
| - | + | ----  | |
| + | Несмотря на то, что за прошедшие годы нейроматематика ушла далеко вперед, многие утверждения МакКалока остаются актуальными и поныне. В частности, при большом разнообразии моделей нейронов принцип их действия, заложенный МакКалоком и Питтсом, остается неизменным.   | ||
| + | =Литература=  | ||
{{Задание|Platonova.Elena|Константин Воронцов|8 января 2010}}  | {{Задание|Platonova.Elena|Константин Воронцов|8 января 2010}}  | ||
Версия 01:37, 6 января 2010
Первой формальной моделью нейронных сетей (НС) была модель МакКаллока-Питтса, уточненная и развитая Клини. Впервые было установлено, что НС могут выполнять любые логические операции и вообще любые преобразования, реализуемые дискретными устройствами с конечной памятью. Эта модель легла в основу теории логических сетей и конечных автоматов и активно использовалась психологами и нейрофизиологами при моделировании некоторых локальных процессов нервной деятельности. В силу своей дискретности она вполне согласуется с компьютерной парадигмой и, более того, служит её «нейронным фундаментом». Но при этом она содержит существенные возможности своего расширения за счет максимального использования параметрических и пороговых свойств нейрона.
Содержание | 
Устройство модели
Пусть имеется  входных величин x1,…,xn бинарных признаков, описывающих объект 
.
Значения этих признаков будем трактовать как величины импульсов, поступающих на вход нейрона через 
 входных синапсов.
Будем считать, что, попадая в нейрон, импульсы складываются с весами ω1,…,ωn.
Если вес положительный, то соответствующий синапс возбуждающий, если отрицательный, то тормозящий. Если суммарный импульс превышает заданный порог активации ω0, то нейрон возбуждается и выдаёт на выходе 1, иначе выдаётся 0.
Таким образом, нейрон вычисляет n-арную булеву функцию
где  - ступенчатая функция Хевисайда.
В теории нейронных сетей функцию φ, преобразующую значение суммарного импульса в выходное значение нейрона, принято называть функцией активации.
Таким образом, модель МакКаллока-Питтса эквивалентна линейному пороговому
классификатору.
Достижения модели
Теоретические основы нейроматематики были заложены в начале 40-х годов.
В 1943 году У. МакКалок и его ученик У. Питтс сформулировали основные положения теории деятельности головного мозга.
Ими были получены следующие результаты:
- разработана модель нейрона как простейшего процессорного элемента, выполняющего вычисление переходной функции от скалярного произведения вектора входных сигналов и вектора весовых коэффициентов;
 - предложена конструкция сети таких элементов для выполнения логических и арифметических операций;
 - сделано основополагающее предположение о том, что такая сеть способна обучаться, распознавать образы, обобщать полученную информацию.
 
Недостатки модели
Недостатком данной модели является сама модель нейрона «пороговой» вид переходной функции. В формализме У. Маккалока-Питтса нейроны имеют состояния 0, 1 и пороговую логику перехода из состояния в состояние. Каждый нейрон в сети определяет взвешенную сумму состояний всех других нейронов и сравнивает ее с порогом, чтобы определить свое собственное состояние.
Пороговый вид функции не предоставляет нейронной сети достаточную гибкость при обучении и настройке на заданную задачу. Если значение вычисленного скалярного произведения, даже незначительно, не достигает до заданного порога, то выходной сигнал не формируется вовсе и нейрон «не срабатывает». Это значит, что теряется интенсивность выходного сигнала (аксона) данного нейрона и, следовательно, формируется невысокое значение уровня на взвешенных входах в следующем слое нейронов.
Несмотря на то, что за прошедшие годы нейроматематика ушла далеко вперед, многие утверждения МакКалока остаются актуальными и поныне. В частности, при большом разнообразии моделей нейронов принцип их действия, заложенный МакКалоком и Питтсом, остается неизменным.
Литература
|   |  Данная статья является непроверенным учебным заданием.
 До указанного срока статья не должна редактироваться другими участниками проекта MachineLearning.ru. По его окончании любой участник вправе исправить данную статью по своему усмотрению и удалить данное предупреждение, выводимое с помощью шаблона {{Задание}}. См. также методические указания по использованию Ресурса MachineLearning.ru в учебном процессе.  | 

