ДСМ-метод в терминах АФП
Материал из MachineLearning.
 (→ДСМ-метод в терминах АФП)  | 
			|||
| Строка 22: | Строка 22: | ||
Логические средства ДСМ-метода представляют собой многозначное многосортное расширение логики предикатов первого порядка с помощью кванторов по кортежам переменной длины (слабая логика предикатов второго порядка).  | Логические средства ДСМ-метода представляют собой многозначное многосортное расширение логики предикатов первого порядка с помощью кванторов по кортежам переменной длины (слабая логика предикатов второго порядка).  | ||
| - | ==ДСМ-метод в терминах   | + | ==ДСМ-метод в терминах Анализа формальных понятий==  | 
В данном разделе приводится формулировка одной из версий ДСМ-метода в терминах [[Анализ формальных понятий|Анализа формальных понятий (АФП)]] (более подробно см. в [Кузнецов 1996], [Ganter, Kuznetsov 2000]).  | В данном разделе приводится формулировка одной из версий ДСМ-метода в терминах [[Анализ формальных понятий|Анализа формальных понятий (АФП)]] (более подробно см. в [Кузнецов 1996], [Ganter, Kuznetsov 2000]).  | ||
Текущая версия
|   | Дмитрий, пожалуйста, расшифруйте сокращения в названии статьи. --Strijov 16:11, 25 декабря 2013 (MSK) | 
Содержание | 
ДСМ-метод
Одной из первых моделей машинного обучения, неявно использовавших решетки (системы замыканий или семейства Мура) был ДСМ-метод, названный так в честь английского философа Джона Стюарта Милля и предложенный впервые в
В. К. Финн, О машинно-ориентированной формализации правдоподобных рассуждений в стиле
Ф. Бэкона -- Д.С. Милля \\ Семиотика и Информатика, 20(1983), 35-10
Метод сходства (Первое правило индуктивной логики): 
"Если два или большее число примеров исследуемого явления обладают только одним общим признаком, то ... [этот признак] есть причина (или следствие) данного явления."
John Stuart Mill, A System of Logic, Ratiocinative and Inductive, London, 1843
В ДСМ-методе гипотезы относительно причины явления ищутся среди пересечений описаний положительных примеров явления. На пересечения могут быть наложены различные дополнительные условия.
Логические средства ДСМ-метода представляют собой многозначное многосортное расширение логики предикатов первого порядка с помощью кванторов по кортежам переменной длины (слабая логика предикатов второго порядка).
ДСМ-метод в терминах Анализа формальных понятий
В данном разделе приводится формулировка одной из версий ДСМ-метода в терминах Анализа формальных понятий (АФП) (более подробно см. в [Кузнецов 1996], [Ganter, Kuznetsov 2000]).
Помимо признаков из множества   имеется целевой признак 
,
относительно которого все объекты разделяются следующим образом:
- положителные примеры: Множество 
объектов, про которые известно, что они обладают целевым признаком
,
 - отрицательные примеры: Множество 
объектов, про которые известно, что они не обладают целевым признаком
,
 -  недоопределенные примеры: Множество 
объектов, про которые неизвестно, обладают ли они целевым признаком или нет.
 
Возникают три подконтекста:
 
.
В подконтекстах  
 операторы Галуа и соответствующие операторы замыкания обозначаются через
, 
, например, 
, 
 и т.д.
Формальное содержание   контекста 
 есть положительная гипотеза
если 
 не является подмножеством содержания ни одного отрицательного  примера
:
Отрицательные гипотезы определяются симметрично (c заменой + на -).
Формальное содержание   контекста 
 есть отрицательная гипотеза
если 
 не является подмножеством содержания ни одного положительного  примера
:
 Классификация недоопределенного примера 
- Если 
содержит в качестве подмножества положительную гипотезу и не содержит
 
ни одной отрицательной гипотезы, то  классифицируется положительно (предсказывается наличие целевого признака 
).
- Если 
содержит в качестве подмножества отрицательную гипотезу и не содержит
 
ни одной положительной гипотезы, то  классифицируется отрицательно (предсказывается отсутствие целевого признака 
).
- Если 
содержит в качестве подмножеств гипотезы обоих знаков или если
вообще не содержит в качестве подмножеств ни положительных ни отрицательных гипотез, то классификация объекта, соответственно, противоречива или недоопределенна.
 
Как следует из определения, для классификации достаточно иметь множество всех минимальных
(относительно , т.е. наиболее общих) гипотез.
Библиография
- В. К. Финн, О машинно-ориентированной формализации правдоподобных рассуждений в стиле Ф. Бэкона -- Д.С. Милля \\ Семиотика и Информатика, 20(1983), 35-10
 - B. Ganter and S.O. Kuznetsov, Formalizing Hypotheses with Concepts. In: G. Mineau and B. Ganter, Eds., Proc. 8th International Conference on Conceptual Structures (ICCS 2001), Lecture Notes in Artificial Intelligence (Springer), Vol. 1867, pp. 342-356, 2000. PDF
 - S.O. Kuznetsov, Mathematical aspects of concept analysis. Journal of Mathematical Science, Vol. 80, Issue 2, pp. 1654-1698, 1996. PDF
 

