Коэффициент корреляции Кенделла
Материал из MachineLearning.
 (Это задание!)  | 
			|||
| Строка 71: | Строка 71: | ||
[[Категория:Энциклопедия анализа данных]]  | [[Категория:Энциклопедия анализа данных]]  | ||
[[Категория:Корреляционный анализ|К]]  | [[Категория:Корреляционный анализ|К]]  | ||
| + | |||
| + | {{Задание|Василий Ломакин|Vokov|31 декабря 2009}}  | ||
Версия 20:04, 19 ноября 2009
 
  | 
Корреляцию Кенделла также называют мерой взаимной неупорядоченности или рассогласования.
Определение
Заданы две выборки . 
Коэффициент корреляции Кенделла, равен
-  
,
 
-  
 
где [логическое выражение]=1, если логическое выражение верно, иначе, 0, например,
Коэффициент  принимает значения от -1 до 1. Равенство 
 указывает на строгую линейную корреляцию.
Статистическая проверка наличия корреляции
Гипотеза : Выборки 
 и 
 не коррелируют.
Статистика критерия:
где .
При  статистику критерия можно приблизить нормальным распределением с параметрами (0,1):
Критерий (при уровне значимости ):
- против альтернативы 
: наличие корреляции
 
-  если 
, где
—
-квантиль стандартного нормального распределения.
 
-  если 
 
Связь коэффициента корреляции Кенделла с коэффициентом корреляции Пирсона
В случае выборок из нормального распределения коэффициент корреляции Кенделла  может быть использован для оценки коэффициента корреляции Пирсона 
 по формуле 
Связь коэффициента корреляции Кенделла с коэффициентом корреляциии Спирмена
Выборкам  и 
  соответствуют последовательности рангов:
, где
— ранг
-го объекта в вариационном ряду выборки
;
, где
— ранг
-го объекта в вариационном ряду выборки
.
Проведем операцию упорядочевания рангов.
Расположим ряд значений  в порядке возрастания величины: 
. Тогда последовательность рангов упорядоченной выборки 
 будет представлять собой последовательность натуральных чисел 
. Значения 
, соответствующие значениям 
, образуют в этом случае некоторую последовательность рангов 
.
(
— операция упорядочевания рангов).
Коэффициент корреляции Кенделла  и коэффициент корреляции Спирмена 
 выражаются через ранги 
 следующим образом:
Коэффициент корреляции Спирмена учитывает насколько сильна неупорядоченность.
Утверждение. Если  выборки  и 
 не коррелируют (выполняется гипотеза 
), то коэффициент корреляции между величинами 
 и 
 можно вычислить по формуле:
Литература
- Кобзарь А. И. Прикладная математическая статистика. — М.: Физматлит, 2006. — 816 с.
 - Лагутин М. Б. Наглядная математическая статистика. В двух томах. — М.: П-центр, 2003
 
См. также
Ссылки
- Коэффициент корреляции(Википедия)
 - Корреляционный анализ (Википедия)
 
|   |  Данная статья является непроверенным учебным заданием.
 До указанного срока статья не должна редактироваться другими участниками проекта MachineLearning.ru. По его окончании любой участник вправе исправить данную статью по своему усмотрению и удалить данное предупреждение, выводимое с помощью шаблона {{Задание}}. См. также методические указания по использованию Ресурса MachineLearning.ru в учебном процессе.  | 

