Публикация:Gorban (2008), Principal Manifolds
Материал из MachineLearning.
м  (→Аннотация:  оформление)  | 
				м  (оформление)  | 
			||
| Строка 1: | Строка 1: | ||
<includeonly>{{Монография|PageName = П:A. Gorban, B. Kegl, D. Wunsch, A. Zinovyev  (2008), Principal Manifolds for Data Visualisation and Dimension Reduction  | <includeonly>{{Монография|PageName = П:A. Gorban, B. Kegl, D. Wunsch, A. Zinovyev  (2008), Principal Manifolds for Data Visualisation and Dimension Reduction  | ||
| - |    |автор = Gorban, A.N.   | + |    |автор = Gorban, A.N.   | 
| - |    |автор2 = Kegl, B   | + |    |автор2 = Kegl, B   | 
| - |    |автор3 = Wunsch, D   | + |    |автор3 = Wunsch, D   | 
| - |    |автор4 = Zinovyev, A.Y.   | + |    |автор4 = Zinovyev, A.Y.   | 
   |название = Principal Manifolds for Data Visualisation and Dimension Reduction  |    |название = Principal Manifolds for Data Visualisation and Dimension Reduction  | ||
   |издатель = Springer, Berlin – Heidelberg – New York  |    |издатель = Springer, Berlin – Heidelberg – New York  | ||
| Строка 29: | Строка 29: | ||
1 Developments and Applications of Nonlinear Principal Component Analysis – a Review  | 1 Developments and Applications of Nonlinear Principal Component Analysis – a Review  | ||
| - |   Uwe Kruger, Junping Zhang, Lei Xie   | + | |
| + | Uwe Kruger, Junping Zhang, Lei Xie   | ||
| + | |||
2 Nonlinear Principal Component Analysis: Neural Network Models and Applications   | 2 Nonlinear Principal Component Analysis: Neural Network Models and Applications   | ||
| - |   Matthias Scholz, Martin Fraunholz, Joachim Selbig                      | + | |
| + | Matthias Scholz, Martin Fraunholz, Joachim Selbig                      | ||
3 Learning Nonlinear Principal Manifolds by Self-Organising Maps  | 3 Learning Nonlinear Principal Manifolds by Self-Organising Maps  | ||
| - |   Hujun Yin                                                         | + | |
| + | Hujun Yin                                                         | ||
| + | |||
4 Elastic Maps and Nets for Approximating Principal Manifolds and Their Application to Microarray Data visualization  | 4 Elastic Maps and Nets for Approximating Principal Manifolds and Their Application to Microarray Data visualization  | ||
| - |   Alexander N Gorban, Andrei Y Zinovyev                             | + | |
| + | Alexander N Gorban, Andrei Y Zinovyev                             | ||
| + | |||
5 Topology-Preserving Mappings for Data Visualisation  | 5 Topology-Preserving Mappings for Data Visualisation  | ||
| - |   Marian PeЇna, Wesam Barbakh, Colin Fyfe                            | + | |
| + | Marian PeЇna, Wesam Barbakh, Colin Fyfe                            | ||
| + | |||
6 The Iterative Extraction Approach to Clustering  | 6 The Iterative Extraction Approach to Clustering  | ||
| - |   Boris Mirkin                                                       | + | |
| + | Boris Mirkin                                                       | ||
| + | |||
7 Representing Complex Data Using Localized Principal Components with Application to Astronomical Data  | 7 Representing Complex Data Using Localized Principal Components with Application to Astronomical Data  | ||
| - |   Jochen Einbeck, Ludger Evers, Coryn Bailer-Jones                      | + | |
| + | Jochen Einbeck, Ludger Evers, Coryn Bailer-Jones                      | ||
| + | |||
8 Auto-Associative Models, Nonlinear Principal Component Analysis, Manifolds and Projection Pursuit  | 8 Auto-Associative Models, Nonlinear Principal Component Analysis, Manifolds and Projection Pursuit  | ||
| - |   Stґephane Girard, Serge Iovleff                                        | + | |
| + | Stґephane Girard, Serge Iovleff                                        | ||
| + | |||
9 Beyond The Concept of Manifolds: Principal Trees, Metro Maps, and Elastic Cubic Complexes  | 9 Beyond The Concept of Manifolds: Principal Trees, Metro Maps, and Elastic Cubic Complexes  | ||
| - |   Alexander N Gorban, Neil R Sumner, Andrei Y Zinovyev              | + | |
| + | Alexander N Gorban, Neil R Sumner, Andrei Y Zinovyev              | ||
| + | |||
10 Diffusion Maps - a Probabilistic Interpretation for Spectral Embedding and Clustering Algorithms  | 10 Diffusion Maps - a Probabilistic Interpretation for Spectral Embedding and Clustering Algorithms  | ||
| - |    Boaz Nadler, Stephane Lafon, Ronald Coifman, Ioannis G Kevrekidis     | + | |
| + | Boaz Nadler, Stephane Lafon, Ronald Coifman, Ioannis G Kevrekidis     | ||
| + | |||
11 On Bounds for Diffusion, Discrepancy and Fill Distance Metrics  | 11 On Bounds for Diffusion, Discrepancy and Fill Distance Metrics  | ||
| - |    Steven B Damelin                                                  | + | |
| + | Steven B Damelin                                                  | ||
12 Geometric Optimization Methods for the Analysis of Gene Expression Data  | 12 Geometric Optimization Methods for the Analysis of Gene Expression Data  | ||
| - |    Michel Journґee, Andrew E Teschendorff, Pierre-Antoine Absil, Simon Tavarґe, Rodolphe Sepulchre                                    | + | |
| + | Michel Journґee, Andrew E Teschendorff, Pierre-Antoine Absil, Simon Tavarґe, Rodolphe Sepulchre                                    | ||
| + | |||
| + | |||
13 Dimensionality Reduction and Microarray data   | 13 Dimensionality Reduction and Microarray data   | ||
| - |    David A Elizondo, Benjamin N Passow, Ralph Birkenhead, Andreas Huemer                                              | + | |
| + | David A Elizondo, Benjamin N Passow, Ralph Birkenhead, Andreas Huemer                                              | ||
| + | |||
14 PCA and K-Means Decipher Genome  | 14 PCA and K-Means Decipher Genome  | ||
| - |    Alexander N Gorban, Andrei Y Zinovyev  | + | |
| + | Alexander N Gorban, Andrei Y Zinovyev  | ||
| + | |||
== Ссылки ==  | == Ссылки ==  | ||
*[http://pca.narod.ru/ Нелинейный  метод  главных  компонент]  | *[http://pca.narod.ru/ Нелинейный  метод  главных  компонент]  | ||
*[http://www.springer.com/math/cse/book/978-3-540-73749-0 Principal Manifolds for Data Visualization and Dimension Reduction]  | *[http://www.springer.com/math/cse/book/978-3-540-73749-0 Principal Manifolds for Data Visualization and Dimension Reduction]  | ||
| - | |||
[[Категория:Машинное обучение (публикации)]]  | [[Категория:Машинное обучение (публикации)]]  | ||
</noinclude>  | </noinclude>  | ||
}}  | }}  | ||
Версия 14:17, 26 сентября 2009
Gorban, A.N. (Ed.), Kegl, B (Ed.), Wunsch, D (Ed.), Zinovyev, A.Y. (Ed.) Principal Manifolds for Data Visualisation and Dimension Reduction. —  Springer, Berlin – Heidelberg – New York, 2008. — ISBN 978-3-540-73749-0
| BibTeX: | 
 @book{NPCA2007,
   author = "Gorban, A.N. (Ed.) and Kegl, B (Ed.) and Wunsch, D (Ed.) and Zinovyev, A.Y. (Ed.)",
   title = "Principal Manifolds for Data Visualisation and Dimension Reduction",
   publisher = "Springer, Berlin – Heidelberg – New York",
   year = "2008",
   url = "http://pca.narod.ru/contentsgkwz.htm",
   isbn = "978-3-540-73749-0",
   language = english
 }
 | 
Аннотация
Первая в мировой научной литературе монография, посвященная методу главных многообразий (обобщения Кохоненовских SOM в том числе): Главные многообразия для визуализации и анализа данных, А. Горбань, Б. Кегль, Д. Вунш, А. Зиновьев (ред.), Шпрингер, 2007. Подготовлена международным коллективом авторов.
 
Contents
1 Developments and Applications of Nonlinear Principal Component Analysis – a Review
Uwe Kruger, Junping Zhang, Lei Xie
2 Nonlinear Principal Component Analysis: Neural Network Models and Applications 
Matthias Scholz, Martin Fraunholz, Joachim Selbig
3 Learning Nonlinear Principal Manifolds by Self-Organising Maps
Hujun Yin
4 Elastic Maps and Nets for Approximating Principal Manifolds and Their Application to Microarray Data visualization
Alexander N Gorban, Andrei Y Zinovyev
5 Topology-Preserving Mappings for Data Visualisation
Marian PeЇna, Wesam Barbakh, Colin Fyfe
6 The Iterative Extraction Approach to Clustering
Boris Mirkin
7 Representing Complex Data Using Localized Principal Components with Application to Astronomical Data
Jochen Einbeck, Ludger Evers, Coryn Bailer-Jones
8 Auto-Associative Models, Nonlinear Principal Component Analysis, Manifolds and Projection Pursuit
Stґephane Girard, Serge Iovleff
 
9 Beyond The Concept of Manifolds: Principal Trees, Metro Maps, and Elastic Cubic Complexes
Alexander N Gorban, Neil R Sumner, Andrei Y Zinovyev
10 Diffusion Maps - a Probabilistic Interpretation for Spectral Embedding and Clustering Algorithms
Boaz Nadler, Stephane Lafon, Ronald Coifman, Ioannis G Kevrekidis
 
11 On Bounds for Diffusion, Discrepancy and Fill Distance Metrics
Steven B Damelin
12 Geometric Optimization Methods for the Analysis of Gene Expression Data
Michel Journґee, Andrew E Teschendorff, Pierre-Antoine Absil, Simon Tavarґe, Rodolphe Sepulchre
13 Dimensionality Reduction and Microarray data 
David A Elizondo, Benjamin N Passow, Ralph Birkenhead, Andreas Huemer
14 PCA and K-Means Decipher Genome
Alexander N Gorban, Andrei Y Zinovyev
Ссылки
- Нелинейный метод главных компонент
 - Principal Manifolds for Data Visualization and Dimension Reduction
 
}}

