Интервальная оценка
Материал из MachineLearning.
(Новая: '''Интервальное оценивание''' - один из видов статистического оценивания, ...) |
|||
Строка 11: | Строка 11: | ||
===Пример 1. Доверительное оценивание по вариационному ряду.=== | ===Пример 1. Доверительное оценивание по вариационному ряду.=== | ||
- | Пусть задана выборка <tex>X^n=(x_1,\cdots,x_n)</tex> некоторой [[случайная величина|случайной величины]] <tex>X.</tex> Построим [[вариационный ряд]] выборки <tex>x^{(1)}<\cdots<x^{(n)}:</tex> | + | Пусть задана выборка <tex>X^n=(x_1,\cdots,x_n)</tex> некоторой [[многомерная случайная величина|случайной величины]] <tex>X.</tex> Построим [[вариационный ряд]] выборки <tex>x^{(1)}<\cdots<x^{(n)}:</tex> |
[[Изображение:Picture.PNG|left]] | [[Изображение:Picture.PNG|left]] | ||
Строка 32: | Строка 32: | ||
[[Изображение:Table.png|thumb|Таблица 1]] | [[Изображение:Table.png|thumb|Таблица 1]] | ||
- | Пусть задана выборка <tex>X^n=(x_1,\cdots,x_n)</tex> некоторой [[случайная величина|случайной величины]] <tex>X.</tex> | + | Пусть задана выборка <tex>X^n=(x_1,\cdots,x_n)</tex> некоторой [[многомерная случайная величина|случайной величины]] <tex>X.</tex> |
* При <tex>n>50</tex> [[доверительный интервал]] для [[обобщённое среднее|медианы]] <tex>\tilde x</tex> определяется [[порядковые статистики|порядковыми статистиками]] | * При <tex>n>50</tex> [[доверительный интервал]] для [[обобщённое среднее|медианы]] <tex>\tilde x</tex> определяется [[порядковые статистики|порядковыми статистиками]] | ||
Версия 02:08, 30 января 2009
Интервальное оценивание - один из видов статистического оценивания, предполагающий построение интервала, в котором с некоторой вероятностью находится истинное значение оцениваемого параметра.
Содержание |
Определение
Пусть - неизвестный параметр генеральной совокупности. По сделанной выборке по определенным правилам находятся числа и такие чтобы выполнялось неравенство:
Интервал является доверительным интервалом для параметра , а число - доверительной вероятностью или надежностью сделанной оценки. Обычно надежность задается заранее, причем выбираются числа близкие к 1 (0.95, 0.99 или 0.999).
Примеры интервальных оценок
Пример 1. Доверительное оценивание по вариационному ряду.
Пусть задана выборка некоторой случайной величины Построим вариационный ряд выборки
Очевидно, что вероятность попасть в любой из - го интервалов значений случайной ведичины одинакова и равна Тогда вероятность того, что случайная величина приняла значение из интервала где будет равна:
Вопрос: чему должен быть равен размер выборки чтобы вероятность попасть в интервал составила 95%.
- Подставляя значение для доверительной вероятности в формулу выше, получим:
- откуда
Таким образом, при достаточном для заданной доверительной вероятности числе измерений случайной величины по набору ее порядковых статистик может быть оценен диапазон принимаемых ею значений.
Пример 2. Доверительный интервал для медианы.
Пусть задана выборка некоторой случайной величины
- При доверительный интервал для медианы определяется порядковыми статистиками
- где
- при
- при
- при
- Для значений номера порядковых статистик, заключающих в себе медиану, при и приведены в таблице 1, взятой из [3].
Литература
- Кобзарь А. И. Прикладная математическая статистика. — М.: Физматлит, 2006.
- Гмурман В. Е. Теория вероятностей и математическая статистика. - М.: Высшая Школа, 2003.
- Закс Л. Статистическое оценивание / Пер. с нем. - М.: Статистика, 1976.