Участник:Пасконова Ольга/Песочница
Материал из MachineLearning.
(→Формула замены переменных в неопределенном интеграле) |
(→Формула замены переменных в неопределенном интеграле) |
||
Строка 45: | Строка 45: | ||
::[[Изображение:Q11.png]] | ::[[Изображение:Q11.png]] | ||
- | Отметим, что формулу {{eqref|2}} бывает целесообразно использовать и в обратном порядке, т.е. справа палево. Именно, иногда удобно вычисление интеграла <tex> \int f(x) dx </tex> с помощью | + | Отметим, что формулу {{eqref|2}} бывает целесообразно использовать и в обратном порядке, т.е. справа палево. Именно, иногда удобно вычисление интеграла <tex> \int f(x) dx </tex> с помощью соответствующей замены переменного <tex> x = \phi(t) </tex> свести к вычислению интеграла [[Изображение:Q12.png]] (если этот интеграл в каком-то смысле «проще» исходного). |
+ | |||
+ | В случае, когда функция <tex> \phi </tex> имеет обратную <tex> \phi^{-1} </tex>, перейдя в обеих частях формулы {{eqref|2}} к переменной <tex> x </tex> с помощью подстановки <tex> t = \phi^{-1}(x) </tex> и поменяв местами стороны равенства, получим | ||
+ | |||
+ | ::[[Изображение:Q13.png]] | ||
+ | |||
+ | Эта формула называется обычно ''формулой интегрирования заменой переменной''. | ||
+ | |||
+ | Для того чтобы существовала функция <tex> \phi^{-1} </tex>, обратная <tex> \phi </tex>, в дополнение к условиям теоремы достаточно, например, потребовать, чтобы на рассматриваемом промежутке <tex> \Delta_t </tex> функция <tex> \phi </tex> была строго монотонной. В этом случае, существует однозначная обратная функция <tex> \phi^{-1} </tex>. |
Версия 17:48, 16 ноября 2008
Формула замены переменных в неопределенном интеграле
Рассмотрим свойство неопределенного интеграла, часто оказывающееся полезным при вычислении первообразных элементарных функций.
Теорема.
Пусть функции и определены соответственно на промежутках и , причем . Если функция имеет на первообразную и, следовательно,
а функция дифференцируема на , то функция имеет на , первообразную и
Формула (1) называется формулой интегрирования подстановкой, а именно подстановкой . Это название объясняется тем, что если формулу (2) записать в виде
то будет видно, что, для того чтобы вычислить интеграл ), можно сделать подстановку , вычислить интеграл и затем вернуться к переменной , положив .
Примеры.
1. Для вычисления интеграла естественно сделать подстановку , тогда
2. Для вычисления интеграла удобно применить подстановку :
3. При вычислении интегралов вида полезна подстановка :
Например,
Иногда, прежде чем применить метод интегрирования подстановкой, приходится проделать более сложные преобразования подынтегральной функции:
Отметим, что формулу (2) бывает целесообразно использовать и в обратном порядке, т.е. справа палево. Именно, иногда удобно вычисление интеграла с помощью соответствующей замены переменного свести к вычислению интеграла (если этот интеграл в каком-то смысле «проще» исходного).
В случае, когда функция имеет обратную , перейдя в обеих частях формулы (2) к переменной с помощью подстановки и поменяв местами стороны равенства, получим
Эта формула называется обычно формулой интегрирования заменой переменной.
Для того чтобы существовала функция , обратная , в дополнение к условиям теоремы достаточно, например, потребовать, чтобы на рассматриваемом промежутке функция была строго монотонной. В этом случае, существует однозначная обратная функция .