Машинное обучение (семинары, ВМК МГУ)
Материал из MachineLearning.
(Различия между версиями)
												
			
			 (→Практические задания)  | 
				|||
| Строка 3: | Строка 3: | ||
|[[Изображение:ML_surfaces.png|280px]]  | |[[Изображение:ML_surfaces.png|280px]]  | ||
| valign="top"|  | | valign="top"|  | ||
| - | * Семинары в поддержку курса лекций [[Машинное обучение (курс лекций,   | + | * Семинары в поддержку курса лекций [[Машинное обучение (курс лекций, В.В.Китов)/2015-2016|«Машинное обучение»]] [[Участник:Victor Kitov|В. Китова]].  | 
* Ведутся на кафедре [[Математические методы прогнозирования (кафедра ВМиК МГУ)|ММП]] [[Факультет вычислительной математики и кибернетики МГУ| ВМК МГУ]] с осени 2012 года.  | * Ведутся на кафедре [[Математические методы прогнозирования (кафедра ВМиК МГУ)|ММП]] [[Факультет вычислительной математики и кибернетики МГУ| ВМК МГУ]] с осени 2012 года.  | ||
* Семинарист: [[Участник:EvgSokolov|Соколов Е.А.]]  | * Семинарист: [[Участник:EvgSokolov|Соколов Е.А.]]  | ||
Версия 21:20, 3 сентября 2015
 
  | 
  | 
Выставление оценки за курс
Итоговая контрольная работа:
- На последней лекции будет проведена контрольная работа, которая затронет все темы, изученные в течение семестра.
 - Контрольная оценивается по двухбалльной шкале (зачет/незачет), незачет влечет за собой недопуск к экзамену.
 - Студент, не получивший допуск, переписывает на экзамене контрольную. В случае успеха он сдает экзамен на первой пересдаче. В случае незачета он снова переписывает контрольную на первой пересдаче, и так далее.
 
Семинары:
- На семинарах по каждой пройденной теме будут проводиться проверочные работы. Каждая проверочная оценивается по пятибалльной шкале. В зависимости от оценки за проверочную, студент освобождается от части или от всех задач по этой теме на итоговой контрольной работе.
 - Также на семинарах будут выдаваться практические задания, которые будут оцениваться по пятибалльной шкале.
 - В течение семестра будут проводиться конкурсы по анализу данных. Каждый конкурс оценивается по 15-балльной шкале. За первое, второе и третье место выставляется 15, 13 и 11 баллов соответственно при условии, что студенты выступят с докладом о своем решении (в противном случае они получают 10 баллов). За места с четвертого и по самое последнее, превосходящее бейзлайн, выставляется от 10 до 1 баллов по равномерной сетке. Если все присланные группой решения будут тривиальными, то преподаватель имеет право снизить максимальную оценку до 10 или до 5 баллов.
 - Оценка за работу в семестре равна сумме оценок за проверочные работы, практические задания и конкурсы.
 - Если оценка за работу в семестре не меньше 100% от максимальной оценки за проверочные и лабораторные работы, то студент освобождается от написания итоговой контрольной и получает допуск к экзамену автоматом.
 - Если оценка за работу в семестре не меньше 80% от максимальной оценки за проверочные и лабораторные работы и конкурсы, то студент получает +1 балл на экзамене (при условии получения положительной оценки).
 - В конце семестра разрешается переписать одну пропущенную по любой причине проверочную работу. Также разрешается переписать все проверочные, пропущенные по уважительной причине.
 
Осенний семестр 2015/2016
Расписание занятий
| Дата | Номер | Тема | Материалы | Д/З | 
|---|---|---|---|---|
| 4 сентября | Семинар 1 | 
 Вводное занятие: 
  | 
Практические задания
| Задание | Тема | Дата выдачи | Срок сдачи | Условие | 
|---|---|---|---|---|
Виртуальная машина с питоном и библиотеками
Полезные ссылки:
- Lectures on scientific computing with Python
 - matplotlib - 2D and 3D plotting in Python
 - A Crash Course in Python for Scientists
 - A gallery of interesting IPython Notebooks
 - An Example Machine Learning Notebook
 - 100 NumPy Exercises
 - Pandas Tutorial
 
Соревнования
| Задание | Тема | Дата начала | Дата окончания | Ссылка | 
|---|---|---|---|---|
Все студенты должны прислать краткий отчет о своем решении и код, воспроизводящий результат.
Оценки
https://docs.google.com/spreadsheets/d/1vK3gM6sAj2TEqO9mPhm5cIuNSmpsw3CIpQnb4G4Dguo/edit?usp=sharing

