Статистический анализ данных (курс лекций, К.В.Воронцов)/2015/1
Материал из MachineLearning.
м  (→Анализ устойчивости критериев к нарушению предположений)  | 
				м   | 
			||
| Строка 12: | Строка 12: | ||
::Шапулин: <tex>\mu_2=0.5, \;\; \sigma_2 = 0.5\,:\,0.01\,:\,2, \;\; n_2=5\,:\,1\,:\,70.</tex> Сравнить t-критерий для неизвестных неравных дисперсий и z-критерий для известных неравных дисперсий.  | ::Шапулин: <tex>\mu_2=0.5, \;\; \sigma_2 = 0.5\,:\,0.01\,:\,2, \;\; n_2=5\,:\,1\,:\,70.</tex> Сравнить t-критерий для неизвестных неравных дисперсий и z-критерий для известных неравных дисперсий.  | ||
::Тюрин: <tex>\mu_2=0\,:\,0.01\,:\,2, \;\; \sigma_2 = 0.5\,:\,0.01\,:\,2, \;\; n_2=50.</tex> Сравнить t-критерий для неизвестных неравных дисперсий и критерий Манна-Уитни-Уилкоксона.  | ::Тюрин: <tex>\mu_2=0\,:\,0.01\,:\,2, \;\; \sigma_2 = 0.5\,:\,0.01\,:\,2, \;\; n_2=50.</tex> Сравнить t-критерий для неизвестных неравных дисперсий и критерий Манна-Уитни-Уилкоксона.  | ||
| - | |||
| - | |||
| - | |||
| - | |||
| - | |||
| - | |||
| - | |||
| - | |||
| - | |||
| - | |||
= Ссылки =  | = Ссылки =  | ||
Версия 05:08, 25 февраля 2015
Ниже под обозначением  понимается выборка объёма 
 из смеси нормального распределения 
 и распределения 
 с весами 
 и 
 соответственно (при генерации каждой выборки используется случайный датчик — если его значение не превосходит 
, то добавляем в выборку элемент, взятый из нормального распределения, иначе — элемент, взятый из распределения F). 
Анализ поведения схожих критериев
Требуется исследовать поведение указанной пары статистических критериев, подходящих для решения одной и той же задачи, сравнить мощность и достигаемые уровни значимости и сделать выводы о границах применимости критериев. Необходимо для каждого из критериев построить графики зависимости достигаемых уровней значимости и оценок мощностей от параметров, и показать, в каких областях изменения параметров предпочтительнее использовать тот или иной критерий. Для получения более гладких графиков рекомендуется применять оба критерия к одним и тем же выборкам, а не генерировать их отдельно для каждого критерия.
- Сендерович: 
, сравнить z-критерии в версиях Вальда и множителей Лагранжа.
 - Лисяной: 
, сравнить z-критерий (в версии множителей Лагранжа) и точный критерий.
 
- Сендерович: 
 
-  
средние равны,
средние не равны;
 
- Колмаков: 
Сравнить версии t-критерия для неизвестных равных и неизвестных неравных дисперсий.
 - Шапулин: 
Сравнить t-критерий для неизвестных неравных дисперсий и z-критерий для известных неравных дисперсий.
 - Тюрин: 
Сравнить t-критерий для неизвестных неравных дисперсий и критерий Манна-Уитни-Уилкоксона.
 
- Колмаков: 
 

