Метод Белсли
Материал из MachineLearning.
м  (→Анализ коллинеарности)  | 
				м  (→Анализ коллинеарности)  | 
			||
| Строка 60: | Строка 60: | ||
<tex>\beta=V_S D^{-1}_S U_S^T y + V_N D^{-1}_N U_N^T y=X^{+}_S y + X^{+}_N y = {\beta}_S + {\beta}_N</tex>  | <tex>\beta=V_S D^{-1}_S U_S^T y + V_N D^{-1}_N U_N^T y=X^{+}_S y + X^{+}_N y = {\beta}_S + {\beta}_N</tex>  | ||
<tex>y=(X_S + X_N)({\beta}_S + {\beta}_N) +e</tex>  | <tex>y=(X_S + X_N)({\beta}_S + {\beta}_N) +e</tex>  | ||
| + | <tex>Cov(\beta) = {\sigma}^2 (X^T X)^{-1}= {\sigma}^2 [V_S D^{-2}_S V_S^T + V_N D^{-2}_N V_N^T]={\sigma}^2 [(X^T_S X_S)^{+} +(X^T_N X_N)^{+} ] = Cov({\beta}_S) + Cov({\beta}_N)</tex>  | ||
==Анализ полученных данных==  | ==Анализ полученных данных==  | ||
Версия 18:41, 28 июня 2010
Линейные регрессионные модели часто используются для исследования зависимости между ответом и признаками, однако результаты часто сомнительны, так как данные не всегда подходящие. Например, при большом количестве признаков часто многие из них сильно зависимы друг от друга, и эта зависимость уменьшает вероятность получения адекватных результатов. Belsley, Kuh и Welsch предложили метод анализа мультиколлинеарности основанный на индексах обусловленности(the scaled condition indexes) и дисперсионных долях(the variance-decomposition proportions).
Содержание | 
Анализ коллинеарности
Линейная регрессионная модель: 
       (1)
 
где  - n-мерный ветор ответа(зависимой переменной), 
 - n x p (n>p) матрица признаков 
 - p-мерный вектор неизвестных коэффициентов, 
 - p-мерный вектор случайного возмущения с нулевым матожиданием и ковариационной матрицей 
, где 
 это n x n единичная матрица, а 
. Будем считать что 
 имеет ранг p.
Если есть коллинеарность между признаками согласно Belsley имеет смысл использовать сингулярное разложение(SVD) чтобы определить вовлеченные переменные. Матрица сингулярного разложения 
 определяется как: 
      (2)
Где  - n x p ортогональная матрица, 
 - p x p верхняя диагональная матрица, чьи неотрицательные элементы являются сингулярными значениями 
, 
 - p x p ортогональная матрица, чьи колонки это собственные вектора 
. Если существует коллинеарная зависимоть, то
будут какие-либо сингулярные значения, скажем, (р - s), которые близки к нулю.
Предположим, что 
, или просто 
, элементы матрицы 
 упорядочены так, что 
И рассмотрим разбиение
где 
 и 
 диогональные, и недиогональнык блоки нулевые. 
, или просто 
, содержит достаточно большие сингулярные значения, а 
, или 
, содержит близкие к нулю. 
Теперь разделим 
 и 
 соответственно: 
 
где  и 
 соответствуют первым s наибольших сингулярных значений, а 
 и 
 содержат 
 веторов соответствующих малым сингулярным значениям.
Матрица 
  ортогональна, т.е 
, так же как и 
 и 
. Таким образом : 
  
 
 
 
 
 
Т.к V тоже ортогональна, то 
 
 
 
 
 
 
Таким образом разложение нам дает: 
Обозначим слагаемые в правой части как 
Заметим что получившиеся матрицы ортогональны, т.е :
 
что обеспечивает возможность ортогонального разложения  :
Здесь все матрицы имеют размер  и полагая что 
 имеет ранг p, 
 и 
 имеють ранг s и (p-s) соответственно. Тогда для разложения (2) :
Далее мы получаем 
и 
 
 
 
 

