Фактор инфляции дисперсии

Материал из MachineLearning.

(Различия между версиями)
Перейти к: навигация, поиск
(Ссылки)
(Определение)
Строка 15: Строка 15:
<tex>VIF_j=\frac{1}{1-R_j^2},</tex>
<tex>VIF_j=\frac{1}{1-R_j^2},</tex>
-
где <tex>R</tex> — [[коэффициент детерминации]]:
+
где <tex>R_j^2</tex> — [[коэффициент детерминации]] j-го признака относительно остальных:
-
<tex>R^2 \equiv 1-{\sum_{j=1}^n (y_j - \hat{y}_j)^2 \over \sum_{j=1}^n (y_j-\bar{y})^2},\.</tex>
+
<tex>R_j^2 \equiv 1-{\sum_{i=1}^n (x_{ij} - \hat{x}_{ij})^2 \over \sum_{j=1}^n (x_{ij}-\bar{\mathbf{x}}_j)^2},\.</tex>
-
Равенство единице фактора инфляции дисперсии говорит об ортогональности вектора значений признака остальным. Если значение <tex>VIF_j</tex> велико, то <tex>1-R^2_j</tex> — мало, то есть <tex>R_j^2</tex> близко к 1. Большие значения фактора инфляции дисперсии соответствуют почти линейной зависимости j-го столбца от остальных.
+
Равенство единице фактора инфляции дисперсии говорит об ортогональности вектора значений признака остальным. Если значение <tex>VIF_j</tex> велико, то <tex>1-R^2_j</tex> — мало, то есть <tex>R_j^2</tex> близко к 1. Большие значения фактора инфляции дисперсии соответствуют почти линейной зависимости j-го столбца от остальных.
==Ссылки==
==Ссылки==

Версия 16:31, 5 марта 2010

В задаче восстановления регрессии фактор инфляции дисперсии (VIF) — мера мультиколлинеарности . Он позволяет оценить увеличение дисперсии заданного коэффициента регрессии, происходящее из-за высокой корреляции данных.

Определение

Пусть задана выборка D = \{ y_i,\mathbf{x}_i\}_{i=1}^n откликов и признаков. Рассматривается множество линейных регрессионных моделей вида:

y_i=\sum_{j=1}^m w_j x_{ij} + \varepsilon_i, i=1,\dots,n

Предполагается, что вектор регрессионных невязок имеет нулевое математическое ожидание и дисперсию \sigma^2. В этом случае дисперсия w_i:

D\hat{w}_j=\frac{\sigma^2}{(n-1)D x_j}\frac{1}{1-R_j^2}.

Первая дробь связана с дисперсией невязок и дисперсией векторов признаков. Вторая — фактор инфляции дисперсии, связанный с корреляцей данного признака с другими:

VIF_j=\frac{1}{1-R_j^2},

где R_j^2коэффициент детерминации j-го признака относительно остальных:

R_j^2 \equiv 1-{\sum_{i=1}^n (x_{ij} - \hat{x}_{ij})^2 \over \sum_{j=1}^n (x_{ij}-\bar{\mathbf{x}}_j)^2},\.

Равенство единице фактора инфляции дисперсии говорит об ортогональности вектора значений признака остальным. Если значение VIF_j велико, то 1-R^2_j — мало, то есть R_j^2 близко к 1. Большие значения фактора инфляции дисперсии соответствуют почти линейной зависимости j-го столбца от остальных.

Ссылки

Литература

1. Дрейпер Н., Смит Г. Прикладной регрессионный анализ. — Вильямс, 2007. — С. 487.

Личные инструменты