Topic Modeling

Andrei Shadrikov

 ${\rm MSU,\ CMC}$ Department of Computational Methods of Forecasting

Contents

- 1 Probalistic Topic Modeling
 - Matrix Factorization and Topic Modeling
 - Probabilistic Topic Modeling
- 2 Iteration Methods
 - Matrix Update Rule
 - Using Different Methods
- 3 Conclusion

Matrix Factorization

Given a matrix $Z = ||z_{ij}||_{n \times m}, (i, j) \in \Omega \subseteq \{1..n\} \times \{1..m\}$

Find matrices $X = ||x_{it}||_{n \times k}$ and $Y = ||y_{ti}||_{k \times m}$ such that

$$||Z - XY||_{\Omega,d} = \sum_{(i,j) \in \Omega} d(z_{ij}, \sum_t x_{it} y_{tj}) \to \min_{X,Y}$$

Variety of problems:

- loss function:
 - quadratic: $d(z, \hat{z}) = (z \hat{z})^2$,
 - Kullback–Leibler: $d(z,\hat{z}) = z \ln(z/\hat{z}) z + \hat{z}$
- nonnegative matrix factorization: $x_{it} \ge 0$, $y_{tj} \ge 0$
- stochastic matrix factorization: $\sum_{i} x_{it} = 1$, $\sum_{t} y_{tj} = 1$
- sparse input data: $|\Omega| \ll nm$
- sparse output factorization X, Y

• Feature Extraction for Image Recognition

$$z_{ij} = \sum_k w_{ik} h_{kj}$$

given: z_{ij} — set of images;

find: w_{ik} — matrix of basis parts (parts, features);

 h_{kj} — matrix of coefficients

2 The measurement of the expression levels of genes in DNA microarray with cross-hybridization

$$z_{pk} = \sum_{g} a_{pg} c_{gk}$$

given: z_{pk} — intensity of probe p on microarray k; **find:** a_{pg} — binding affinity of probe p for gene g; c_{qk} — concentration of gene g on microarray k.

 Revealing latent interests in recommender system (collaborative filtering)

$$z_{iu} = \sum_{t} p_{it} q_{tu}$$

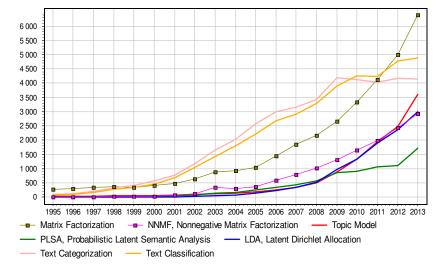
given: z_{iu} — item i rating by user u; find: p_{it} — interests profile of item i; q_{tu} — interests profile of a user i.

 Revealing latent topics in text collection (topic modeling)

$$z_{wd} = \sum_{t} \phi_{wt} \theta_{td}$$

given: $z_{wd} = p(w|d)$ — word probabilities for document d; **find:** $\phi_{wt} = p(w|t)$ — word probabilities for topic t, $\theta_{td} = p(t|d)$ — topic probabilities for document d.

Google Scholar citation counts



Probabilistic Topic Model (PTM)

W — vocabulary of terms (words or phrases) D — collection of text documents $d = (w_1, \ldots, w_{n_d})$

Assumptions:

- each term in each document refers to some latent topic $t \in T$
- $D \times W \times T$ discrete probability space, $|T| \ll |D|, |W|$
- $(d_i, w_i, t_i)_{i=1}^n \sim p(d, w, t)$ text collection as an i.i.d. sample
- d_i, w_i are observable, topics t_i are hidden
- p(w|d,t) = p(w|t) conditional independence assumption

Generative topic model for a text collection:

$$p(w|d) = \sum_{t \in T} \underbrace{p(w|t)}_{\phi_{vut}} \underbrace{p(t|d)}_{\theta_{td}}$$

- $\phi_{wt} \equiv p(w|t)$ distribution over terms for topic t;
- $\theta_{td} \equiv p(t|d)$ distribution over topics for document d;

Goals and applications of topic modeling

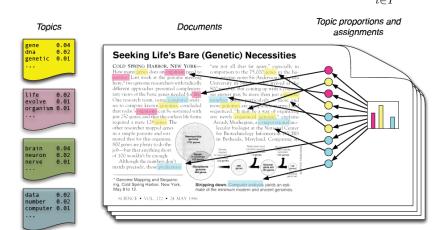
Goals:

- Uncover a hidden thematic structure of the text collection
- Find a highly compressed representation of each document by a set of its topics

Applications:

- Information retrieval for long-text queries
- Categorization, classification, summarization, segmentation of texts, images, video, signals
- Semantic search in large scientific documents collections
- Revealing research trends and research fronts
- Expert search
- News aggregation
- Recommender systems
- etc...

Document $d = (w_1, \dots, w_{n_d})$ is generated from $p(w|d) = \sum_{i=1}^{n} \phi_{wt} \theta_{td}$



Inverse problem: document collection \rightarrow PTM

Given a document collection:

 n_{dw} — how many times term w appears in document d $\hat{p}(w|d) \equiv \frac{n_{dw}}{n_d}$ — conditional term frequency

Find stochastic matrix factorization

$$\hat{p}(w|d) \approx \sum_{t \in T} \phi_{wt} \theta_{td}$$

or in matrix notation

$$Z_{W\times D} \approx \Phi_{W\times T} \cdot \Theta_{T\times D}$$

$$Z = \|\hat{p}(w|d)\|_{W \times D} - \text{known frequency matrix,}$$

$$\Phi = \|\phi_{wt}\|_{W \times T} - \text{term-topic matrix, } \phi_{wt} = p(w|t),$$

$$\Theta = \|\theta_{td}\|_{T \times D} - \text{topic-document matrix, } \theta_{td} = p(t|d).$$

Matrix Update Rule

Popular iteration methods can be written as:

Input: matrix Z, # of topics |T|, # of iterations i_{max} ; **Output**: matrices Φ and Θ :

- 1 initialize Φ_{wt} , Θ_{td} for all w, t, d;
- 2 forall the iterations $i = 1, ..., i_{max}$ do
- 3 $\Phi_{ik}^{new} = F(\Phi^{old}, \Theta^{old})$; 4 $\Theta_{kj}^{new} = G(\Phi^{old}, \Theta^{old})$;

Example of Iteration Methods

 PLSA — Probabilistic Latent Semantic Analysis [Hoffman, 1999]

$$n_{dwt} = Z_{ij} \frac{\Phi_{wt}\Theta_{td}}{\sum_{t \in T} \Phi_{ws}\Theta_{sd}}$$

 n_{dwt} — counts the number of triples (d, w, t) in D

$$\Phi_{wt} = \frac{n_{wt}}{n_t} \equiv \frac{\sum\limits_{d \in D} n_{dwt}}{\sum\limits_{d \in D} \sum\limits_{w \in d} n_{dwt}}, \qquad \Theta_{td} = \frac{n_{td}}{n_d} \equiv \frac{\sum\limits_{w \in d} n_{dwt}}{\sum\limits_{w \in W} \sum\limits_{t \in T} n_{dwt}},$$

Short notation via proportionality sign \propto :

$$\Phi_{wt} \propto n_{wt}; \qquad \Theta_{td} \propto n_{td};$$

Example of Iteration Methods

2 MU — Gradient Descent with Multiplicative Update Rule [Lee, Seung, 2001]

$$\Phi_{wt} = \Phi_{wt} \frac{(Z\Theta^T)_{wt}}{(\Phi\Theta\Theta^T)_{wt}}, \qquad \Theta_{td} = \Theta_{td} \frac{(\Phi^T Z)_{td}}{(\Phi^T \Phi\Theta)_{td}}$$

3 ALS — Alternating Least Squares [Paatero, Tapper, 1994]

$$\Phi \leftarrow [solve \, \Theta \Theta^T \Phi^T = \Theta Z^T]_+$$

$$\Theta \leftarrow [solve \, \Phi^T \Phi \Theta = \Phi^T Z]_+$$

NMF to SMF

How can we use NMF methods in Topic Modeling?

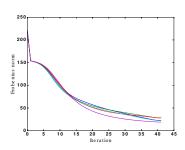
Projection: $Pr_{U_n}v = \frac{1}{\|v\|}v$

 U_n — normalization constraints.

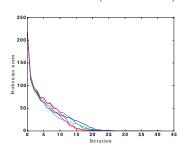
v — result of NMF method.

With normalization methods can be used in topic modeling.

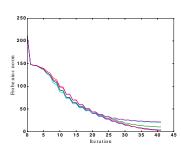
MU with normalization



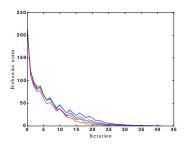
MU + ALS (normalized)



MU + PLSA



MU + ALS (normalized) + PLSA



Problems

For now we have issues like:

- Many local optima, algorithms stuck.
- Slow convergence.
- Not interpretable results.
- ...

Futher Discussion

• Some problems can be solved using regularization:

$$\min_{\Phi,\,\Theta} D\left(Z - \Phi\Theta\right) + \frac{R(\Phi,\Theta)}{R(\Phi,\Theta)}$$

- Can algorithms be paralleled?
- Can there be unique solution?

Bibliography

- Hofmann T. Probabilistic Latent Semantic Indexing. SIGIR, 1999.
- Asuncion A., Welling M., Smyth P., Teh Y. W. On smoothing and inference for topic models. Int'l Conf. on Uncertainty in Artificial Intelligence, 2009.
- Lee D., Seung S. Algorithms for nonnegative matrix factorization.
- Vorontsov K. V. Additive Regularization for Topic Models of Text Collections // Doklady Mathematics. Pleiades Publisher, 2014. Vol. 88, No. 3.

