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Abstract. In this paper we introduce a generalized learning algorithm
for probabilistic topic models (PTM). Many known and new algorithms
for PLSA, LDA, and SWB models can be obtained as its special cases
by choosing a subset of the following “options”: regularization, sampling,
update frequency, sparsing and robustness. We show that a robust topic
model, which distinguishes specific, background and topic terms, doesn’t
need Dirichlet regularization and provides controllably sparse solution.
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1 Generalized Learning Algorithm for PTMs

Topic modeling is a rapidly developing application of machine learning to text
analysis. A topic model of a text corpus determines what terms characterize
each topic and what topics are associated with each document. Each document d
from a text corpus D is a sequence of terms (w1, . . . , wnd

) from a vocabulary W ,
where nd is the length of the document. Let ndw denote the number of term w

occurrences in document d. According to probabilistic topic models PLSA [4]
and LDA [2] a finite set of latent topics T exists and each document d ∈ D is a
set of terms, drawn independently from the following distribution:

p(w | d) =
∑

t∈T

φwtθtd, (1)

where φwt ≡ p(w | t) and θtd ≡ p(t | d) are discrete distributions to be found.
In Probabilistic Latent Semantic Analysis (PLSA) parameters of the model

Φ = (φwt)W×T and Θ = (θtd)T×D are estimated through likelihood maximiza-
tion, given non-negativity and normality constraints for vectors φt and θd:

L(Θ,Φ) =
∑

d∈D

∑

w∈d

ndw ln
∑

t∈T

φwtθtd → max
Θ,Φ

. (2)

In Latent Dirichlet Allocation (LDA) parameters are assumed to be drawn from
a prior Dirichlet distribution: θd ∼ Dir(α), α ∈ R

T, φt ∼ Dir(β), β ∈ R
W helping

to reduce overfitting [2]. Although PLSA and LDA have different generative mod-
els, the differences between their learning algorithms are not so significant [1].
Both of them use an iterative process originating from the EM-algorithm. Each
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iteration is a linear pass through the corpus. For each document–term pair (d, w)
current values of φwt, θtd are used to estimate discrete distribution over topics
Hdwt = p(t | d, w) from Bayes’ theorem; then vice-versa conditional probabilities
φwt, θtd are estimated from counters ndwt = ndwHdwt:

Hdwt = φwtθtd
(
∑

s

φwsθsd
)−1

. (3)

φwt =
(

n̂wt + βw

)(

n̂t +
∑

u

βu

)−1
, n̂t =

∑

w∈W

n̂wt, n̂wt =
∑

d∈D

ndwt;

θtd =
(

n̂dt + αt

)(

n̂d +
∑

s

αs

)−1
, n̂d =

∑

t∈T

n̂dt, n̂dt =
∑

w∈d

ndwt.
(4)

We propose a set of mutually compatible “options” for this iterative process that
being combined give a variety of learning algorithms for PTMs.

1. Dirichlet regularization with fixed [5] or optimized [6] smoothing parameters
αt, βw gives LDA. Turning them off (αt = 0, βw = 0) gives PLSA.

2. Sampling uses Monte-Carlo estimate p̂(t | d, w) instead of p(t | d, w). Sam-
pling ndw topics for each pair (d, w) gives Gibbs Sampling (GS) algorithm [5].
However this contradicts the H-sparsity hypothesis “each term in the document
is typically associated with one topic”. Our experiments show that reduced sam-

pling of s = 1, . . . , 5 topics per pair (d, w) makes the algorithm more speed- and
memory-efficient without significant loss of quality.

3. Frequent update of φ and θ parameters per each of ndw occurrences of a
term is used in GS. Rare update per iteration is used in original PLSA [4] and in
recent collapsed GS and variational Bayesian (VB) algorithms including highly
competitive CVB0 algorithm. We also tested per-k-terms and per-document up-
date strategies. Our experiments show that the increase of frequency speeds up
convergence but does not influence the model quality. Per-occurrence update
used in GS is too intensive; per-term update seems to be optimal.

4. Sparsing heuristic follows the hypotheses of Θ-sparsity: “a document typ-
ically refers to a few topics” and Φ-sparsity: “a topic is typically characterized
by a small part of terms”. We perform sparsing by setting to zero the fraction
σ of the smallest probabilities θtd for each d and the smallest probabilities φwt

for each t at the end of each i-th iteration if i > i0 and i is divisible by k. The
parameters σ, k, i0 provide a way to trade off sparsity against quality.

2 Robust PLSA and LDA Topic Models

Robust PTM named Specific Words and Background (SWB) [3] introduces a very
realistic assumption that each document d can be represented by a mixture of
topic terms distribution (1), now rewritten as Zdw, noise terms distribution
πdw ≡ pn(w | d) that models specific aspects of the document, and background

terms distribution πw ≡ pb(w) that models common aspects of the whole corpus:

p(w | d) =
Zdw + γπdw + επw

1 + γ + ε
, Zdw =

∑

t∈T

φwtθtd,
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Algorithm 1. Robust PLSA and LDA learning algorithm.

1: n̂wt, n̂dt, n̂t, n̂d, ndwt, νdw, νd, ν, ν
′

dw, ν
′

w, ν
′ := 0; πdw := ndw/nd; πw := nw/n;

2: repeat

3: for all d ∈ D, w ∈ d do

4: if not first pass through the corpus then

5: update φwt, θtd for all t ∈ T according to (4);
6: πw := ν′

w/ν
′; πdw := (ndw/νd − Zdw/γ − επw/γ)+;

7: Z := Zdw + γπdw + επw;
8: δ := ndwφwtθtd/Z; increase n̂wt, n̂dt, n̂t, n̂d by (δ−ndwt); ndwt := δ; ∀t ∈ T ;
9: δ := ndwγπdw/Z; increase νd, ν by (δ − νdw); νdw := δ;
10: δ := ndwεπw/Z; increase ν′

w, ν
′ by (δ − ν′

dw); ν′

dw := δ;
11: until Φ, Θ, Π converge.

where πdw and πw are unknown distributions, γ and ε are given fixed parameters.
A modified LDA-GS has been proposed in [3] to train the SWB model. We use
our generalized PTM learner to combine robustness with other options not shown
in the sketch Algorithm 1 because of volume limitation. Note that step 6 uses
a maximum likelihood estimate for πdw as opposed to recurrent formulas in [3].

3 Experiments and Conclusions

To evaluate PTMs the hold-out perplexity is commonly used:

P(D′) = exp

(

−
∑

d∈D′

∑

w∈d′′

ndw ln p(w | d)

/

∑

d∈D′

∑

w∈d′′

ndw

)

,

where each test document d from the document set D′ is randomly divided into
two halves d′ and d′′. The parameters φwt and πw are learned from the training
set D. The document-related parameters θtd and πdw are learned from d′. Then
the perplexity is computed using the second halves d′′ of the test documents.

We use two different datasets. The NIPS corpus is standard. The RuDis corpus
contains 2000 Russian-language synopses of theses of the total length about
8.7 · 106 and the vocabulary size about 3 · 104 after lemmatization and stop-
words removal. The test set contains |D′| = 200 documents for both corpora.

The parameters are as follows: number of topics |T | = 100; Dirichlet prior for
LDA models: αt = 0.5, βw = 0.01; robustness parameters: γ = 0.3, ε = 0.1.

Fig. 1–3 represent the graphs of P(D′) from the number of iterations.
Fig. 1 shows that PLSA and LDA perform almost identically if the test set

doesn’t contain the terms that haven’t occurred in the training set. Thus LDA
does not reduce overfitting but only describes the probability of new terms better.
However robust models describe new terms even more accurately, see Fig. 3.

Sparsing may deteriorate PLSA and LDA models, which are not intrinsically
sparse. Robust models are more suitable for sparsing due to the compensative
role of the noise component πdw. Sparsing with σ = 0.05, i0 = 10, k = 2 gives
about 90% of zeros in Φ and Θ matrixes with no loss of quality, see Fig. 2.
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Fig. 1. Regularization has an advantage if
only there are new terms in a test set
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Fig. 2. Sparsing Φ and Θ up to 90% of zero
values does not worsen perplexity (RuDis)
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Fig. 3. Robustness reduces the hold-out perplexity more effectively than regularization
does (options: D–Dirichlet prior, S–sampling, R–robustness; left: RuDis, right: NIPS)

The most surprising result is that robust models perform well without Dirich-
let prior, see Fig. 3. Robust PLSA gives a better hold-out perplexity than non
robust LDA. Robustness, sparsing and reduced sampling together make PTMs
learning algorithms more scalable to large text collections.
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