4 Derivations of the Discrete-Time Kalman Filter

We derive here the basic equations of the Kalman filter (KF), for discrete-time linear systems. We consider several derivations under different assumptions and viewpoints:

- For the Gaussian case, the KF is the optimal (MMSE) state estimator.
- In the non-Gaussian case, the KF is derived as the best linear (LMMSE) state estimator.
- We also provide a deterministic (least-squares) interpretation.

We start by describing the basic state-space model.

4.1 The Stochastic State-Space Model

A discrete-time, linear, time-varying state space system is given by:

$$
\begin{aligned}
x_{k+1} & =F_{k} x_{k}+G_{k} w_{k} & & \text { (state evolution equation) } \\
z_{k} & =H_{k} x_{k}+v_{k} & & \text { (measurement equation) }
\end{aligned}
$$

for $k \geq 0$ (say), and initial conditions x_{0}. Here:

- F_{k}, G_{k}, H_{k} are known matrices.
- $x_{k} \in \mathbb{R}^{n}$ is the state vector.
- $w_{k} \in \mathbb{R}^{n_{w}}$ is the state noise.
- $z_{k} \in \mathbb{R}^{m}$ is the observation vector.
- v_{k} the observation noise.
- The initial conditions are given by x_{0}, usually a random variable.

The noise sequences $\left(w_{k}, v_{k}\right)$ and the initial conditions x_{0} are stochastic processes with known statistics.

The Markovian model

Recall that a stochastic process $\left\{X_{k}\right\}$ is a Markov process if

$$
p\left(X_{k+1} \mid X_{k}, X_{k-1}, \ldots\right)=p\left(X_{k+1} \mid X_{k}\right)
$$

For the state x_{k} to be Markovian, we need the following assumption.
Assumption A1: The state-noise process $\left\{w_{k}\right\}$ is white in the strict sense, namely all w_{k} 's are independent of each other. Furthermore, this process is independent of x_{0}.

The following is then a simple exercise:
Proposition: Under A1, the state process $\left\{x_{k}, k \geq 0\right\}$ is Markov.

Note:

- Linearity is not essential: The Marko property follows from A1 also for the nonlinear state equation $x_{k+1}=f\left(x_{k}, w_{k}\right)$.
- The measurement process z_{k} is usually not Markov.
- The pdf of the state can (in principle) be computed recursively via the following (Chapman-Kolmogorov) equation:

$$
p\left(x_{k+1}\right)=\int p\left(x_{k+1} \mid x_{k}\right) p\left(x_{k}\right) d x_{k}
$$

where $p\left(x_{k+1} \mid x_{k}\right)$ is determined by $p\left(w_{k}\right)$.

The Gaussian model

- Assume that the noise sequences $\left\{w_{k}\right\},\left\{v_{k}\right\}$ and the initial conditions x_{0} are jointly Gaussian.
- It easily follows that the processes $\left\{x_{k}\right\}$ and $\left\{z_{k}\right\}$ are (jointly) Gaussian as well.
- If, in addition, A1 is satisfied (namely $\left\{w_{k}\right\}$ is white and independent of x_{0}), then x_{k} is a Markov process.

This model is often called the Gauss-Markov Model.

Second-Order Model

We often assume that only the first and second order statistics of the noise is known. Consider our linear system:

$$
\begin{aligned}
x_{k+1} & =F_{k} x_{k}+G_{k} w_{k}, \quad k \geq 0 \\
z_{k} & =H_{k} x_{x}+v_{k},
\end{aligned}
$$

under the following assumptions:

- w_{k} a 0 -mean white noise: $E\left(w_{k}\right)=0, \operatorname{cov}\left(w_{k}, w_{l}\right)=Q_{k} \delta_{k l}$.
- v_{k} a 0-mean white noise: $E\left(v_{k}\right)=0, \operatorname{cov}\left(v_{k}, v_{l}\right)=R_{k} \delta_{k l}$.
- $\operatorname{cov}\left(w_{k}, v_{l}\right)=0:$ uncorrelated noise.
- x_{0} is uncorrelated with the other noise sequences.
denote $\bar{x}_{0}=E\left(x_{0}\right), \operatorname{cov}\left(x_{0}\right)=P_{0}$.

We refer to this model as the standard second-order model.
It is sometimes useful to allow correlation between v_{k} and w_{k} :

$$
\operatorname{cov}\left(w_{k}, v_{l}\right) \equiv E\left(w_{k} v_{l}^{T}\right)=S_{k} \delta_{k l} .
$$

This gives the second-order model with correlated noise.
A short-hand notation for the above correlations:

$$
\operatorname{cov}\left(\left[\begin{array}{c}
w_{k} \\
v_{k} \\
x_{0}
\end{array}\right],\left[\begin{array}{c}
w_{l} \\
v_{l} \\
x_{0}
\end{array}\right]\right)=\left[\begin{array}{ccc}
Q_{k} \delta_{k l} & S_{k} \delta_{k l} & 0 \\
S_{k}^{T} \delta_{k l} & R_{k} \delta_{k l} & 0 \\
0 & 0 & P_{0}
\end{array}\right]
$$

Note that the Gauss-Markov model is a special case of this model.

Mean and covariance propagation

For the standard second-order model, we easily obtain recursive formulas for the mean and covariance of the state.

- The mean obviously satisfies:

$$
\bar{x}_{k+1}=F_{k} \bar{x}_{k}+G_{k} \bar{w}_{k}=F_{k} \bar{x}_{k}
$$

- Consider next the covariance:

$$
P_{k} \doteq E\left(\left(x_{k}-\bar{x}_{k}\right)\left(x_{k}-\bar{x}\right)^{T}\right) .
$$

Note that $x_{k+1}-\bar{x}_{k+1}=F_{k}\left(x_{k}-\bar{x}_{k}\right)+G_{k} w_{k}$, and w_{k} and x_{k} are uncorrelated (why?). Therefore

$$
P_{k+1}=F_{k} P_{k} F_{k}^{T}+G_{k} Q_{k} G_{k}^{T} .
$$

This equation is in the form of a Lyapunov difference equation.

- Since $z_{k}=H_{k} x_{x}+v_{k}$, it is now easy to compute its covariance, and also the joint covariances of $\left(x_{k}, z_{k}\right)$.
- In the Gaussian case, the pdf of x_{k} is completely specified by the mean and covariance: $x_{k} \sim N\left(\bar{x}_{k}, P_{k}\right)$.

4.2 The KF for the Gaussian Case

Consider the linear Gaussian (or Gauss-Markov) model

$$
\begin{aligned}
x_{k+1} & =F_{k} x_{k}+G_{k} w_{k}, \quad k \geq 0 \\
z_{k} & =H_{k} x_{x}+v_{k}
\end{aligned}
$$

where:

- $\left\{w_{k}\right\}$ and $\left\{v_{k}\right\}$ are independent, zero-mean Gaussian white processes with covariances

$$
E\left(v_{k} v_{l}^{T}\right)=R_{k} \delta_{k l}, \quad E\left(w_{k} w_{l}^{T}\right)=Q_{k} \delta_{k l}
$$

- The initial state x_{0} is a Gaussian RV, independent of the noise processes, with $x_{0} \sim N\left(\bar{x}_{0}, P_{0}\right)$.

Let $Z_{k}=\left(z_{0}, \ldots, z_{k}\right)$. Our goal is to compute recursively the following optimal (MMSE) estimator of x_{k} :

$$
\hat{x}_{k}^{+} \equiv \hat{x}_{k \mid k} \doteq E\left(x_{k} \mid Z_{k}\right) .
$$

Also define the one-step predictor of x_{k} :

$$
\hat{x}_{k}^{-} \equiv \hat{x}_{k \mid k-1} \doteq E\left(x_{k} \mid Z_{k-1}\right)
$$

and the respective covariance matrices:

$$
\begin{aligned}
P_{k}^{+} & \left.\equiv P_{k \mid k} \doteq E\left\{x_{k}-\hat{x}_{k}^{+}\right)\left(x_{k}-\hat{x}_{k}^{+}\right)^{T} \mid Z_{k}\right\} \\
P_{k}^{-} & \left.\equiv P_{k \mid k-1} \doteq E\left\{x_{k}-\hat{x}_{k}^{-}\right)\left(x_{k}-\hat{x}_{k}^{-}\right)^{T} \mid Z_{k-1}\right\}
\end{aligned}
$$

Note that P_{k}^{+}(and similarly P_{k}^{-}) can be viewed in two ways:
(i) It is the covariance matrix of the (posterior) estimation error, $e_{k}=x_{k}-\hat{x}_{k}^{+}$. In particular, $\mathrm{MMSE}=\operatorname{trace}\left(P_{k}^{+}\right)$.
(ii) It is the covariance matrix of the "conditional RV $\left(x_{k} \mid Z_{k}\right)$ ", namely an RV with distribution $p\left(x_{k} \mid Z_{k}\right)$ (since \hat{x}_{k}^{+}is its mean).

Finally, denote $P_{0}^{-} \doteq P_{0}, \quad \hat{x}_{0}^{-} \doteq \bar{x}_{0}$.

Recall the formulas for conditioned Gaussian vectors:

- If \mathbf{x} and \mathbf{z} are jointly Gaussian, then $p_{x \mid z} \sim N(m, \Sigma)$, with

$$
\begin{aligned}
& m=m_{x}+\Sigma_{x z} \Sigma_{z z}^{-1}\left(z-m_{z}\right), \\
& \Sigma=\Sigma_{x x}-\Sigma_{x z} \Sigma_{z z}^{-1} \Sigma_{z x} .
\end{aligned}
$$

- The same formulas hold when everything is conditioned, in addition, on another random vector.

According to the terminology above, we say in this case that the conditional RV $(\mathrm{x} \mid z)$ is Gaussian.

Proposition: For the model above, all random processes (noises, x_{k}, z_{k}) are jointly Gaussian.

Proof: All can be expressed as linear combinations of the noise seqeunces, which are jointly Gaussian (why?).

It follows that $\left(x_{k} \mid Z_{m}\right)$ is Gaussian (for any k, m). In particular:

$$
\left(x_{k} \mid Z_{k}\right) \sim N\left(\hat{x}_{k}^{+}, P_{k}^{+}\right), \quad\left(x_{k} \mid Z_{k-1}\right) \sim N\left(\hat{x}_{k}^{-}, P_{k}^{-}\right) .
$$

Filter Derivation

Suppose, at time k, that $\left(\hat{x}_{k}^{-}, P_{k}^{-}\right)$is given.
We shall compute $\left(\hat{x}_{k}^{+}, P_{k}^{+}\right)$and $\left(\hat{x}_{k+1}^{-}, P_{k+1}^{-}\right)$, using the following two steps.

Measurement update step: Since $z_{k}=H_{k} x_{k}+v_{k}$, then the conditional vector $\overline{\left.\left.\binom{x_{k}}{z_{k}} \right\rvert\, Z_{k-1}\right) \text { is Gaussian, with mean and covariance: }}$

$$
\left[\begin{array}{c}
\hat{x}_{k}^{-} \\
H_{k} \hat{x}_{k}^{-}
\end{array}\right], \quad\left[\begin{array}{cc}
P_{k}^{-} & P_{k}^{-} H_{k}^{T} \\
H_{k} P_{k}^{-} & M_{k}
\end{array}\right]
$$

where

$$
M_{k} \triangleq H_{k} P_{k}^{-} H_{k}^{T}+R_{k}
$$

To compute $\left(x_{k} \mid Z_{k}\right)=\left(x_{k} \mid z_{k}, Z_{k-1}\right)$, we apply the above formula for conditional expectation of Gaussian RVs, with everything pre-conditioned on Z_{k-1}. It follows that $\left(x_{k} \mid Z_{k}\right)$ is Gaussian, with mean and covariance:

$$
\begin{gathered}
\hat{x}_{k}^{+} \doteq E\left(x_{k} \mid Z_{k}\right)=\hat{x}_{k}^{-}+P_{k}^{-} H_{k}^{T}\left(M_{k}\right)^{-1}\left(z_{k}-H_{k} \hat{x}_{k}^{-}\right) \\
P_{k}^{+} \doteq \operatorname{cov}\left(x_{k} \mid Z_{k}\right)=P_{k}^{-}-P_{k}^{-} H_{k}^{T}\left(M_{k}\right)^{-1} H_{k} P_{k}^{-}
\end{gathered}
$$

$\underline{\text { Time update step }}$ Recall that $x_{k+1}=F_{k} x_{k}+G_{k} w_{k}$. Further, x_{k} and w_{k} are independent given Z_{k} (why?). Therefore,

$$
\begin{gathered}
\hat{x}_{k+1}^{-} \doteq E\left(x_{k+1} \mid Z_{k}\right)=F_{k} \hat{x}_{k}^{+} \\
P_{k+1}^{-} \doteq \operatorname{cov}\left(x_{k+1} \mid Z_{k}\right)=F_{k} P_{k}^{+} F_{k}^{T}+G_{k} Q_{k} G_{k}^{T}
\end{gathered}
$$

Remarks:

1. The KF computes both the estimate \hat{x}_{k}^{+}and its MSE/covariance P_{k}^{+}(and similarly for \hat{x}_{k}^{-}).
Note that the covariance computation is needed as part of the estimator computation. However, it is also of independent importance as is assigns a measure of the uncertainly (or confidence) to the estimate.
2. It is remarkable that the conditional covariance matrices P_{k}^{+}and P_{k}^{-}do not depend on the measurements $\left\{z_{k}\right\}$. They can therefore be computed in advance, given the system matrices and the noise covariances.
3. As usual in the Gaussian case, P_{k}^{+}is also the unconditional error covariance:

$$
P_{k}^{+}=\operatorname{cov}\left(x_{k}-\hat{x}_{k}^{+}\right)=E\left[\left(x_{k}-\hat{x}_{k}^{+}\right)\left(x_{k}-\hat{x}_{k}^{+}\right)^{T}\right] .
$$

In the non-Gaussian case, the unconditional covariance will play the central role as we compute the LMMSE estimator.
4. Suppose we need to estimate some $s_{k} \doteq C x_{k}$.

Then the optimal estimate is $\hat{s}_{k}=E\left(s_{k} \mid Z_{k}\right)=C \hat{x}_{k}^{+}$.
5. The following "output prediction error"

$$
\tilde{z}_{k} \doteq z_{k}-H_{k} \hat{x}_{k}^{-} \equiv z_{k}-E\left(z_{k} \mid Z_{k-1}\right)
$$

is called the innovation, and $\left\{\tilde{z}_{k}\right\}$ is the important innovations process.
Note that $M_{k}=H_{k} P_{k}^{-} H_{k}^{T}+R_{k}$ is just the covariance of \tilde{z}_{k}.

4.3 Best Linear Estimator - Innovations Approach

a. Linear Estimators

Recall that the best linear (or LMMSE) estimator of \mathbf{x} given \mathbf{y} is an estimator of the form $\hat{x}=A y+b$, which minimizes the mean square error $E\left(\|x-\hat{x}\|^{2}\right)$. It is given by:

$$
\hat{x}=m_{x}+\Sigma_{x y} \Sigma_{y y}^{-1}\left(y-m_{y}\right)
$$

where $\Sigma_{x y}$ and $\Sigma_{y y}$ are the covariance matrices. It easily follows that \hat{x} is unbiased: $E(\hat{x})=m_{x}$, and the corresponding (minimal) error covariance is

$$
\operatorname{cov}(x-\hat{x})=E(x-\hat{x})(x-\hat{x})^{T}=\Sigma_{x x}-\Sigma_{x y} \Sigma_{y y}^{-1} \Sigma_{x y}^{T}
$$

We shall find it convenient to denote this estimator \hat{x} as $E^{L}(x \mid y)$. Note that this is not the standard conditional expectation.

Recall further the orthogonality principle:

$$
E\left(\left(x-E^{L}(x \mid y)\right) L(y)\right)=0
$$

for any linear function $\mathrm{L}(\mathrm{y})$ of y.
The following property will be most useful. It follows simply by using $y=\left(y_{1} ; y_{2}\right)$ in the formulas above:

- Suppose $\operatorname{cov}\left(y_{1}, y_{2}\right)=0$. Then

$$
E^{L}\left(x \mid y_{1}, y_{2}\right)=E^{L}\left(x \mid y_{1}\right)+\left[E^{L}\left(x \mid y_{2}\right)-E(x)\right] .
$$

Furthermore,

$$
\operatorname{cov}\left(x-E^{L}\left(x \mid y_{1}, y_{2}\right)\right)=\left(\Sigma_{x x}-\Sigma_{x y_{1}} \Sigma_{y_{1} y_{1}}^{-1} \Sigma_{x y_{1}}^{T}\right)-\Sigma_{x y_{2}} \Sigma_{y_{2} y_{2}}^{-1} \Sigma_{x y_{2}}^{T}
$$

b. The innovations process

Consider a discrete-time stochastic process $\left\{z_{k}\right\}_{k \geq 0}$. The (wide-sense) innovations process is defined as

$$
\tilde{z}_{k}=z_{k}-E^{L}\left(z_{k} \mid Z_{k-1}\right),
$$

where $Z_{k-1}=\left(z_{0} ; \cdots z_{k-1}\right)$. The innovation RV \tilde{z}_{k} may be regarded as containing only the new statistical information which is not already in Z_{k-1}.

The following properties follow directly from those of the best linear estimator:
(1) $E\left(\tilde{z}_{k}\right)=0$, and $E\left(\tilde{z}_{k} Z_{k-1}^{T}\right)=0$.
(2) \tilde{z}_{k} is a linear function of Z_{k}.
(3) Thus, $\operatorname{cov}\left(\tilde{z}_{k}, \tilde{z}_{l}\right)=E\left(\tilde{z}_{k} \tilde{z}_{l}^{T}\right)=0$ for $k \neq l$.

This implies that the innovations process is a zero-mean white noise process.
Denote $\tilde{Z}_{k}=\left(\tilde{z}_{0} ; \cdots ; \tilde{z}_{k}\right)$. It is easily verified that Z_{k} and \tilde{Z}_{k} are linear functions of each other. This implies that $E^{L}\left(x \mid Z_{k}\right)=E^{L}\left(x \mid \tilde{Z}_{k}\right)$ for any RV x.

It follows that (taking $E(x)=0$ for simplicity):

$$
\begin{aligned}
E^{L}\left(x \mid Z_{k}\right) & =E^{L}\left(x \mid \tilde{Z}_{k}\right) \\
& =E^{L}\left(x \mid \tilde{Z}_{k-1}\right)+E^{L}\left(x \mid \tilde{z}_{k}\right)=\sum_{l=0}^{k} E^{L}\left(x \mid \tilde{z}_{l}\right)
\end{aligned}
$$

c. Derivation of the KF equations

We proceed to derive the Kalman filter as the best linear estimator for our linear, non-Gaussian model. We slightly generalize the model that was treated so far by allowing correlation between the state noise and measurement noise. Thus, we consider the model

$$
\begin{aligned}
x_{k+1} & =F_{k} x_{k}+G_{k} w_{k}, \quad k \geq 0 \\
z_{k} & =H_{k} x_{x}+v_{k},
\end{aligned}
$$

with $\left[w_{k} ; v_{k}\right]$ a zero-mean white noise sequence with covariance

$$
E\left(\left[\begin{array}{c}
w_{k} \\
v_{k}
\end{array}\right]\left[w_{l}^{T}, v_{l}^{T}\right]\right)=\left[\begin{array}{cc}
Q_{k} & S_{k} \\
S_{k}^{T} & R_{k}
\end{array}\right] \delta_{k l}
$$

x_{0} has mean \bar{x}_{0}, covariance P_{0}, and is uncorrelated with the noise sequence.
We use here the following notation:

$$
\begin{array}{ll}
Z_{k}=\left(z_{0} ; \cdots ; z_{k}\right) & \\
\hat{x}_{k \mid k-1}=E^{L}\left(x_{k} \mid Z_{k-1}\right) & \hat{x}_{k \mid k}=E^{L}\left(x_{k} \mid Z_{k}\right) \\
\tilde{x}_{k \mid k-1}=x_{k}-\hat{x}_{k \mid k-1} & \tilde{x}_{k \mid k}=x_{k}-\hat{x}_{k \mid k} \\
P_{k \mid k-1}=\operatorname{cov}\left(\tilde{x}_{k \mid k-1}\right) & P_{k \mid k}=\operatorname{cov}\left(\tilde{x}_{k \mid k}\right)
\end{array}
$$

and defne the innovations process

$$
\tilde{z}_{k} \triangleq z_{k}-E^{L}\left(z_{k} \mid Z_{k-1}\right)=z_{k}-H_{k} \hat{x}_{k \mid k-1}
$$

Note that

$$
\tilde{z}_{k}=H_{k} \tilde{x}_{k \mid k-1}+v_{k} .
$$

Measurement update: From our previous discussion of linear estimation and innovations,

$$
\begin{aligned}
\hat{x}_{k \mid k} & =E^{L}\left(x_{k} \mid Z_{k}\right)=E^{L}\left(x_{k} \mid \tilde{Z}_{k}\right) \\
& =E^{L}\left(x_{k} \mid \tilde{Z}_{k-1}\right)+E^{L}\left(x_{k} \mid \tilde{z}_{k}\right)-E\left(x_{k}\right)
\end{aligned}
$$

This relation is the basis for the innovations approach. The rest follows essentially by direct computations, and some use of the orthogonality principle. First,

$$
E^{L}\left(x_{k} \mid \tilde{z}_{k}\right)-E\left(x_{k}\right)=\operatorname{cov}\left(x_{k}, \tilde{z}_{k}\right) \operatorname{cov}\left(\tilde{z}_{k}\right)^{-1} \tilde{z}_{k}
$$

The two covariances are next computed:

$$
\operatorname{cov}\left(x_{k}, \tilde{z}_{k}\right)=\operatorname{cov}\left(x_{k}, H_{k} \tilde{x}_{k \mid k-1}+v_{k}\right)=P_{k \mid k-1} H_{k}^{T}
$$

where $E\left(x_{k} \tilde{x}_{k \mid k-1}^{T}\right)=P_{k \mid k-1}$ follows by orthogonality, and we also used the fact that v_{k} and x_{k} are not correlated. Similarly,

$$
\operatorname{cov}\left(\tilde{z}_{k}\right)=\operatorname{cov}\left(H_{k} \tilde{x}_{k \mid k-1}+v_{k}\right)=H_{k} P_{k \mid k-1} H_{k}^{T}+R_{k} \doteq M_{k}
$$

By substituting in the estimator expression we obtain

$$
\hat{x}_{k \mid k}=\hat{x}_{k \mid k-1}+P_{k \mid k-1} H_{k}^{T} M_{k}^{-1} \tilde{z}_{k}
$$

Time update: This step is less trivial than before due to the correlation between v_{k} and w_{k}. We have

$$
\begin{aligned}
\hat{x}_{k+1 \mid k} & =E^{L}\left(x_{k+1} \mid \tilde{Z}_{k}\right)=E^{L}\left(F_{k} x_{k}+G_{k} w_{k} \mid \tilde{Z}_{k}\right) \\
& =F_{k} \hat{x}_{k \mid k}+G_{k} E^{L}\left(w_{k} \mid \tilde{z}_{k}\right)
\end{aligned}
$$

In the last equation we used $E^{L}\left(w_{k} \mid \tilde{Z}_{k-1}\right)=0$ since w_{k} is uncorrelated with \tilde{Z}_{k-1}. Thus

$$
\begin{aligned}
\hat{x}_{k+1 \mid k} & =F_{k} \hat{x}_{k \mid k}+G_{k} E\left(w_{k} \tilde{z}_{k}^{T}\right) \operatorname{cov}\left(\tilde{z}_{k}\right)^{-1} \tilde{z}_{k} \\
& =F_{k} \hat{x}_{k \mid k}+G_{k} S_{k} M_{k}^{-1} \tilde{z}_{k}
\end{aligned}
$$

where $E\left(w_{k} \tilde{z}_{k}^{T}\right)=E\left(w_{k} v_{k}^{T}\right)=S_{k}$ follows from $\tilde{z}_{k}=H_{k} \tilde{x}_{k \mid k-1}+v_{k}$.

Combined update: Combining the measurement and time updates, we obtain the one-step update for $\hat{x}_{k \mid k-1}$:

$$
\hat{x}_{k+1 \mid k}=F_{k} \hat{x}_{k \mid k-1}+K_{k} \tilde{z}_{k}
$$

where

$$
\begin{aligned}
K_{k} & \doteq\left(F_{k} P_{k \mid k-1} H_{k}+G_{k} S_{k}\right) M_{k}^{-1} \\
\tilde{z}_{k} & =z_{k}-H_{k} \hat{x}_{k \mid k-1} \\
M_{k} & =H_{k} P_{k \mid k-1} H_{k}^{T}+R_{k} .
\end{aligned}
$$

Covariance update: The relation between $P_{k \mid k}$ and $P_{k \mid k-1}$ is exactly as before.
The recursion for $P_{k+1 \mid k}$ is most conveniently obtained in terms of $P_{k \mid k-1}$ directly. From the previous relations we obtain

$$
\tilde{x}_{k+1 \mid k}=\left(F_{k}-K_{k} H_{k}\right) \tilde{x}_{k \mid k-1}+G_{k} w_{k}-K_{k} v_{k}
$$

Since \tilde{x}_{k} is uncorrelated with w_{k} and v_{k},

$$
\begin{aligned}
P_{k+1 \mid k}= & \left(F_{k}-K_{k} H_{k}\right) P_{k \mid k-1}\left(F_{k}-K_{k} H_{k}\right)^{T}+G_{k} Q_{k} G_{k}^{T} \\
& +K_{k} R_{k} K_{k}^{T}-\left(G_{k} S_{k} K_{k}^{T}+K_{k} S_{k}^{T} G_{k}^{T}\right)
\end{aligned}
$$

This completes the filter equations for this case.

Addendum: A Hilbert space interpretation

The definitions and results concerning linear estimators can be nicely interpreted in terms of a Hilbert space formulation.

Consider for simplicity all RVs in this section to have 0 mean.
Recall that a Hilbert space is a (complete) inner-product space. That is, it is a linear vector space V, with a real-valued inner product operation $\left\langle v_{1}, v_{2}\right\rangle$ which is bi-linear, symmetric, and non-degenerate $(\langle v, v\rangle=0$ iff $v=0$). (Completeness means that every Cauchy sequence has a limit.) The derived norm is defined as $\|v\|^{2}=\langle v, v\rangle$. The following facts are standard:

1. A subspace S is a linearly-closed subset of V. Alternatively, it is the linear span of some set of vectors $\left\{v_{\alpha}\right\}$.
2. The orthogonal projection $\Pi_{S} v$ of a vector v unto the subspace S is the closest element to v in S, i.e., the vector $v^{\prime} \in S$ which minimizes $\left\|v-v^{\prime}\right\|$. Such a vector exists and is unique, and satisfies $\left(v-\Pi_{S} v\right) \perp S$, i.e., $\left\langle v-\Pi_{S} v, s\right\rangle=0$ for $s \in S$.
3. If $S=\operatorname{span}\left\{s_{1}, \ldots, s_{k}\right\}$, then $\Pi_{S} v=\sum_{i=1}^{k} \alpha_{i} s_{i}$, where

$$
\left[\alpha_{1}, \ldots, \alpha_{k}\right]=\left[\left\langle v, s_{1}\right\rangle, \ldots,\left\langle v, s_{k}\right\rangle\right]\left[\left\langle s_{i}, s_{j}\right\rangle_{i, j=1 \ldots k}\right]^{-1}
$$

4. If $S=S_{1} \oplus S_{2}$ (S is the direct sum of two orthogonal subspaces S_{1} and S_{2}), then

$$
\Pi_{S} v=\Pi_{S_{1}} v+\Pi_{S_{2}} v .
$$

If $\left\{s_{1}, \ldots, s_{k}\right\}$ is an orthogonal basis of S, then

$$
\Pi_{S} v=\sum_{i=1}^{k}\left\langle v, s_{i}\right\rangle\left\langle s_{i}, s_{i}\right\rangle^{-1} s_{i}
$$

5. Given a set of (independent) vectors $\left\{v_{1}, v_{2} \ldots\right\}$, the following Gram-Schmidt procedure provides an orthogonal basis:

$$
\begin{aligned}
\tilde{v}_{k} & =v_{k}-\Pi_{\text {span }\left\{v_{1} \ldots v_{k-1}\right\}} v_{k} \\
& =v_{k}-\sum_{i=1}^{k-1}\left\langle v_{k}, \tilde{v}_{i}\right\rangle\left\langle\tilde{v}_{i}, \tilde{v}_{i}\right\rangle^{-1} v_{i}
\end{aligned}
$$

We can fit the previous results on linear estimation to this framework by noting the following correspondence:

- Our Hilbert space is the space of all zero-mean random variables \mathbf{x} (on a given probability space) which are square-integrable: $E\left(\mathbf{x}^{2}\right)=0$. The inner product in defined as $\langle\mathbf{x}, \mathbf{y}\rangle=E(\mathbf{x y})$.
- The optimal linear estimator $E^{L}\left(x_{k} \mid Z_{k}\right)$, with $Z_{k}=\left(z_{0}, \ldots, z_{k}\right)$, is the orthogonal projection of the vector x_{k} on the subspace spanned by Z_{k}. (If x_{k} is vector-valued, we simply consider the projection of each element separately.)
- The innovations process $\left\{z_{k}\right\}$ is an orthogonalized version of $\left\{z_{k}\right\}$.

The Hilbert space formulation provides a nice insight, and can also provide useful technical results, especially in the continuous-time case. However, we shall not go deeper into this topic.

4.4 The Kalman Filter as a Least-Squares Problem

Consider the following deterministic optimization problem.
Cost function (to be minimized):

$$
\begin{aligned}
J_{k}= & \frac{1}{2}\left(x_{0}-\bar{x}_{0}\right)^{T} P_{0}^{-1}\left(x_{0}-\bar{x}_{0}\right) \\
& +\frac{1}{2} \sum_{l=0}^{k}\left(z_{l}-H_{l} x_{l}\right)^{T} R_{l}^{-1}\left(z_{l}-H_{l} x_{l}\right) \\
& +\frac{1}{2} \sum_{l=0}^{k-1} w_{l}^{T} Q_{l}^{-1} w_{l}
\end{aligned}
$$

Constraints:

$$
x_{l+1}=F_{l} x_{l}+G_{l} w_{l}, \quad l=0,1, \ldots, k-1
$$

Variables:

$$
x_{0}, \ldots x_{k} ; w_{0}, \ldots w_{k-1} .
$$

Here $\bar{x}_{0},\left\{z_{l}\right\}$ are given vectors, and P_{0}, R_{l}, Q_{l} symmetric positive-definite matrices.
Let $\left(x_{o}^{(k)}, \ldots, x_{k}^{(k)}\right)$ denote the optimal solution of this problem. We claim that $x_{k}^{(k)}$ can be computed exactly as $\hat{x}_{k \mid k}$ in the corresponding KF problem.

This claim can be established by writing explicitly the least-squares solution for $k-1$ and k, and manipulating the matrix expressions.

We will take here a quicker route, using the Gaussian insight.
Theorem The minimizing solution $\left(x_{o}^{(k)}, \ldots, x_{k}^{(k)}\right)$ of the above LS problem is the maximizer of the conditional probability (that is, the MAP estimator):

$$
p\left(x_{0}, \ldots, x_{k} \mid Z_{k}\right), \quad \text { w.r.t. }\left(x_{o}, \ldots, x_{k}\right)
$$

related to the Gaussian model:

$$
\begin{aligned}
x_{k+1} & =F_{k} x_{k}+G_{k} w_{k}, \quad x_{0} \sim N\left(\bar{x}_{0}, P_{0}\right) \\
z_{k} & =H_{k} x_{k}+v_{k}, \quad w_{k} \sim N\left(0, Q_{k}\right), v_{k} \sim N\left(0, P_{k}\right)
\end{aligned}
$$

with w_{k}, v_{k} white and independent of x_{0}.
Proof: Write down the distribution $p\left(x_{0} \ldots x_{k}, Z_{k}\right)$.

Immediate Consequence: Since for Gaussian RV's $M A P=M M S E$, then $\left(x_{0}, \ldots, x_{k}\right)^{(k)}$ are equivalent to the expected means: In particular, $x_{k}^{(k)}=x_{k}^{+}$.

Remark: The above theorem (but not the last consequence) holds true even for the non-linear model: $x_{k+1}=F_{k}\left(x_{k}\right)+G_{k} w_{k}$.

4.5 KF Equations - Basic Versions

a. The basic equations

Initial Conditions:

$$
\hat{x}_{0}^{-}=\bar{x}_{0} \doteq E\left(x_{0}\right), \quad P_{0}^{-}=P_{0} \doteq \operatorname{cov}\left(x_{0}\right) .
$$

Measurement update:

$$
\begin{aligned}
\hat{x}_{k}^{+} & =\hat{x}_{k}^{-}+K_{k}\left(z_{k}-H_{k} \hat{x}_{k}^{-}\right) \\
P_{k}^{+} & =P_{k}^{-}-K_{k} H_{k} P_{k}^{-}
\end{aligned}
$$

where K_{k} is the Kalman Gain matrix:

$$
K_{k}=P_{k}^{-} H_{k}^{T}\left(H_{k} P_{k}^{-} H_{k}^{T}+R_{k}\right)^{-1}
$$

Time update:

$$
\begin{aligned}
\hat{x}_{k+1}^{-} & =F_{k} \hat{x}_{k}^{+} \quad\left[+B_{k} u_{k}\right] \\
P_{k+1}^{-} & =F_{k} P_{k}^{+} F_{k}^{T}+G_{k} Q_{k} G_{k}^{T}
\end{aligned}
$$

b. One-step iterations

The two-step equations may obviously be combined into a one-step update which computes \hat{x}_{k+1}^{+}from $\hat{x}_{k}^{+}\left(\right.$or \hat{x}_{k+1}^{-}from \hat{x}_{k}^{-}).
For example,

$$
\begin{aligned}
\hat{x}_{k+1}^{-} & =F_{k} \hat{x}_{k}^{-}+F_{k} K_{k}\left(z_{k}-H_{k} \hat{x}_{k}^{-}\right) \\
P_{k+1}^{-} & =F_{k}\left(P_{k}^{-}-\bar{K}_{k} H_{k} P_{k}^{-}\right) F_{k}^{T}+G_{k} Q_{k} G_{k}^{T} .
\end{aligned}
$$

$L_{k} \doteq F_{k} K_{k}$ is also known as the Kalman gain.
The iterative equation for P_{k}^{-}is called the (discrete-time, time-varying) Matrix Riccati Equation.

c. Other important quantities

The measurement prediction, the innovations process, and the innovations covariance are given by

$$
\begin{aligned}
\hat{z}_{k} & \doteq E\left(z_{k} \mid Z_{k-1}\right)=H_{k} \hat{x}_{k}^{-}\left(+I_{k} u_{k}\right) \\
\tilde{z}_{k} & \doteq z_{k}-\hat{z}_{k}=H_{k} \tilde{x}_{k}^{-} \\
M_{k} & \doteq \operatorname{cov}\left(\tilde{z}_{k}\right)=H_{k} P_{k}^{-} H_{k}^{T}+R_{k}
\end{aligned}
$$

d. Alternative Forms for the covariance update

The measurement update for the (optimal) covariance P_{k} may be expressed in the following equivalent formulas:

$$
\begin{aligned}
P_{k}^{+} & =P_{k}^{-}-K_{k} H_{k} P_{k}^{-} \\
& =\left(I-K_{k} H_{k}\right) P_{k}^{-} \\
& =P_{k}^{-}-P_{k}^{-} H_{k}^{T} M_{k}^{-1} H_{k} P_{k}^{-} \\
& =P_{k}^{-}-K_{k} M_{k} K_{k}^{T}
\end{aligned}
$$

We mention two alternative forms:

1. The Joseph form: Noting that

$$
x_{k}-\hat{x}_{k}^{+}=\left(I-K_{k} H_{k}\right)\left(x_{k}-\hat{x}_{k}^{-}\right)-K_{k} v_{k}
$$

it follows immediately that

$$
P_{k}^{+}=\left(I-K_{k} H_{k}\right) P_{k}^{-}\left(I-K_{k} H_{k}\right)^{T}+K_{k} R_{k} K_{k}^{T}
$$

This form may be more computationally expensive, but has the following advantages:

- It holds for any gain K_{k} (not just the optimal) that is used in the estimator equation $\hat{x}_{k}^{+}=\hat{x}_{k}^{-}+K_{k} \tilde{z}_{k}$.
- Numerically, it is guaranteed to preserve positive-definiteness $\left(P_{k}^{+}>0\right)$.

2. Information form:

$$
\left(P_{k}^{+}\right)^{-1}=\left(P_{k}^{-}\right)^{-1}+H_{k} R_{k}^{-1} H_{k}
$$

The equivalence may obtained via the useful Matrix Inversion Lemma:

$$
(A+B C D)^{-1}=A^{-1}-A^{-1} B\left(D A^{-1} B+C^{-1}\right)^{-1} D A^{-1}
$$

where A, C are square nonsingular matrices (possibly of different size).
P^{-1} is called the Information Matrix. It forms the basis for the "information filter", which only computes the inverse covariances.

e. Relation to Deterministic Observers

The one-step recursion for \hat{x}_{k}^{-}is similar in form to the algebraic state observer from control theory.

Given a (deterministic) system:

$$
\begin{aligned}
x_{k+1} & =F_{k} x_{k}+B_{k} u_{k} \\
z_{k} & =H_{k} x_{k}
\end{aligned}
$$

a state observer is defined by

$$
\hat{x}_{k+1}=F_{k} \hat{x}_{k}+B_{k} u_{k}+L_{k}\left(z_{k}-H_{k} \hat{x}_{k}\right)
$$

where L_{k} are gain matrices to be chosen, with the goal of obtaining $\tilde{x}_{k} \doteq\left(x_{k}-\hat{x}_{k}\right) \rightarrow$ 0 as $k \rightarrow \infty$.

Since

$$
\tilde{x}_{k+1}=\left(F_{k}-L_{k} H_{k}\right) \tilde{x}_{k},
$$

we need to choose L_{k} so that the linear system defined by $A_{k}=\left(F_{k}-L_{k} H_{k}\right)$ is asymptotically stable.

This is possible when the original system is detectable.
The Kalman gain automatically satisfies this stability requirement (whenever the detectability condition is satisfied).

