Методы оптимизации, ВМК, осень 2018

Домашняя работа 1: Дифференцирование

Срок сдачи: 20 сентября 2018 (четверг), 23:59

- 1 Для каждой из следующих функций f вычислите первую и вторую производные f' и f'':
 - (a) $f: E \to \mathbb{R}$ функция $f(t) := \mathrm{Det}(A tI_n)$, где $A \in \mathbb{R}^{n \times n}$, $E := \{t \in \mathbb{R} : \mathrm{Det}(A tI_n) \neq 0\}$.
 - (b) $f: \mathbb{R}_{++} \to \mathbb{R}$ функция $f(t) := \|(A + tI_n)^{-1}b\|^2$, где $A \in \mathbb{S}^n_+, b \in \mathbb{R}^n$.
- **2** Для каждой из следующих функций f вычислите градиент ∇f и гессиан $\nabla^2 f$ (относительно стандартного скалярного произведения в пространстве \mathbb{R}^n):
 - (a) $f: \mathbb{R}^n \to \mathbb{R}$ функция $f(x) := \frac{1}{2} \|xx^T A\|_F^2$, где $A \in \mathbb{S}^n$.
 - (b) $f:\mathbb{R}^n\setminus\{0\} o\mathbb{R}$ функция $f(x):=rac{\langle Ax,x
 angle}{\|x\|^2},$ где $A\in\mathbb{S}^n.$
 - (c) $f: \mathbb{R}^n \setminus \{0\} \to \mathbb{R}$ функция $f(x) := \langle x, x \rangle^{\langle x, x \rangle}$.
 - (d) $f:\mathbb{R}^n o\mathbb{R}$ функция $f(x):=\ln(\sum_{i=1}^m e^{\langle a_i,x\rangle})$, где $a_1,\dots,a_m\in\mathbb{R}^n$.
- **3** Для каждой из следующих функций f покажите, что вторая производная D^2f является знакоопределенной (как квадратичная форма) и установите ее знак:
 - (a) $f:E \to \mathbb{R}$ функция $f(x):=\ln(-Q(x))$, где $E:=\{x\in\mathbb{R}^n:Q(x)<0\},\ Q:\mathbb{R}^n\to\mathbb{R}$ функция $Q(x):=\frac{1}{2}\langle Ax,x\rangle+\langle b,x\rangle+c,\ A\in\mathbb{S}^n_+,\ b\in\mathbb{R}^n,\ c\in\mathbb{R}.$
 - (b) $f: \mathbb{R}^n_{++} \to \mathbb{R}$ функция $f(x) := (\sum_{i=1}^n x_i^p)^{1/p}$, где $p < 1, p \neq 0$.
 - (c) $f:\mathbb{R}^n_{++}\to\mathbb{R}$ функция $f(x):=\prod_{i=1}^n x_i^{\alpha_i}$, где $\alpha_1,\ldots,\alpha_n\geq 0,\,\sum_{i=1}^n \alpha_i=1.$
 - (d) $f:\mathbb{S}^n_{++}\to\mathbb{R}$ функция $f(X):=\langle X^{-1},A\rangle$, где $A\in\mathbb{S}^n_+$.
 - (e) $f: \mathbb{S}_{++}^n \to \mathbb{R}$ функция $f(X) := (\text{Det}(X))^{1/n}$.

 $(\mathit{\Piodcka3ka} \colon B$ некоторых пунктах могут оказаться полезными неравенства Коши–Буняковского и Йенсена.)

- 4 Для каждой из следующих функций f найдите все точки стационарности и определите их тип (локальный минимум, локальный максимум, седловая точка):
 - (a) $f: \mathbb{R}^2 \to \mathbb{R}$ функция $f(x) := 2x_1^2 + x_2^2(x_2^2 2)$.
 - (b) $f: \mathbb{R}^2 \to \mathbb{R}$ функция $f(x) := (1-x_1)^2 + 100(x_2 x_1^2)^2$.
 - (c) $f:\mathbb{R}^n\setminus\{0\} o\mathbb{R}$ функция $f(x):=rac{\langle Ax,x
 angle}{\|x\|^2},$ где $A\in\mathbb{S}^n.$
- 5 Пусть c ненулевой вектор в $\mathbb{R}^n,\,\sigma>0,$ и пусть $f:\mathbb{R}^n\to\mathbb{R}$ функция

$$f(x) := \langle c, x \rangle + \frac{\sigma}{3} ||x||^3.$$

Найдите единственную точку стационарности функции f.