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Abstract. Probabilistic topic modeling of text collections is a power-
ful tool for statistical text analysis. Determining the optimal number
of topics remains a challenging problem in topic modeling. We propose
a simple entropy regularization for topic selection in terms of Additive

Regularization of Topic Models (ARTM), a multicriteria approach for
combining regularizers. The entropy regularization gradually eliminates
insignificant and linearly dependent topics. This process converges to the
correct value on semi-real data. On real text collections it can be com-
bined with sparsing, smoothing and decorrelation regularizers to produce
a sequence of models with different numbers of well interpretable topics.

Keywords: probabilistic topic modeling, regularization, Probabilistic
Latent Sematic Analysis, topic selection, EM-algorithm

1 Introduction

Topic modeling is a rapidly developing branch of statistical text analysis (Blei,
2012). Topic model reveals a hidden thematic structure of the text collection
and finds a highly compressed representation of each document by a set of its
topics. From the statistical point of view, a probabilistic topic model defines
each topic by a multinomial distribution over words, and then describes each
document with a multinomial distribution over topics. Such models appear to
be highly useful for many applications including information retrieval, classifica-
tion, categorization, summarization and segmentation of texts. More ideas and
applications are outlined in the survey (Daud et al, 2010).

Determining an appropriate number of topics for a given collection is an im-
portant problem in probabilistic topic modeling. Choosing too few topics results
in too general topics, while choosing too many ones leads to insignificant and
highly similar topics. Hierarchical Dirichlet Process, HDP (Teh et al, 2006; Blei
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et al, 2010) is the most popular Bayesian approach for number of topics opti-
mization. Nevertheless, HDP sometimes gives very unstable number of topics
and requires a complicated inference if combined with other models.

To address the above problems we use a non-Bayesian semi-probabilistic ap-
proach — Additive Regularization of Topic Models, ARTM (Vorontsov, 2014;
Vorontsov and Potapenko, 2014a). Learning a topic model from a document
collection is an ill-posed problem of approximate stochastic matrix factoriza-
tion, which has an infinite set of solutions. In order to choose a better solution,
we maximize the log-likelihood with a weighted sum of regularization penalty
terms. These regularizers formalize additional requirements for a topic model.
Unlike Bayesian approach, ARTM avoids excessive probabilistic assumptions and
simplifies the inference of multi-objective topic models.

The aim of the paper is to develop topic selection technique for ARTM based
on entropy regularization and to study its combinations with other useful regu-
larizers such as sparsing, smoothing and decorrelation.

The rest of the paper is organized as follows. In section 2 we introduce a gen-
eral ARTM framework, the regularized EM-algorithm, and a set of regularizers
including the entropy regularizer for topic selection. In section 3 we use semi-real
dataset with known number of topics to show that the entropy regularizer con-
verges to the correct number of topics, gives a more stable result than HDP, and
gradually removes linearly dependent topics. In section 4 the experiments on real
dataset give an insight that optimization of the number of topics is in its turn
an ill-posed problem and has many solutions. We propose additional criteria to
choose the best of them. In section 5 we discuss advantages and limitations of
ARTM with topic selection regularization.

2 Additive Regularization of Topic Models

Let D denote a set (collection) of texts and W denote a set (vocabulary) of all
terms that appear in these texts. A term can be a single word or a keyphrase.
Each document d ∈ D is a sequence of nd terms (w1, . . . , wnd

) from W . Denote
ndw the number of times the term w appears in the document d.

Assume that each term occurrence in each document refers to some latent
topic from a finite set of topics T . Then text collection is considered as a sample of
triples (wi, di, ti), i = 1, . . . , n drawn independently from a discrete distribution
p(w, d, t) over a finite space W×D×T . Terms w and documents d are observable
variables, while topics t are latent variables. Following the “bag of words” model,
we represent each document as a subset of terms d ⊂ W .

A probabilistic topic model describes how terms of a document are generated
from a mixture of given distributions φwt = p(w | t) and θtd = p(t | d):

p(w | d) =
∑

t∈T

p(w | t)p(t | d) =
∑

t∈T

φwtθtd. (1)

Learning a topic model is an inverse problem to find distributions φwt and θtd
given a collection D. This problem is equivalent to finding an approximate rep-
resentation of frequency matrix F =

(
ndw

nd

)

W×D
with a product F ≈ ΦΘ of two
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unknown matrices — the matrix Φ = (φwt)W×T of term probabilities for the

topics and the matrix Θ = (θtd)T×D of topic probabilities for the documents.
Matrices F , Φ and Θ are stochastic, that is, their columns are non-negative, nor-
malized, and represent discrete distributions. Usually |T | ≪ |D| and |T | ≪ |W |.

In Probabilistic Latent Semantic Analysis, PLSA (Hofmann, 1999) a topic
model (1) is learned by log-likelihood maximization with linear constrains:

L(Φ,Θ) =
∑

d∈D

∑

w∈d

ndw ln
∑

t∈T

φwtθtd → max
Φ,Θ

; (2)

∑

w∈W

φwt = 1, φwt ≥ 0;
∑

t∈T

θtd = 1, θtd ≥ 0. (3)

The product ΦΘ is defined up to a linear transformation ΦΘ = (ΦS)(S−1Θ),
where matrices Φ′ = ΦS and Θ′ = S−1Θ are also stochastic. Therefore, in a
general case the maximization problem (2) has an infinite set of solutions.

In Additive Regularization of Topic Models, ARTM (Vorontsov, 2014) a
topic model (1) is learned by maximization of a linear combination of the log-
likelihood (2) and r regularization penalty terms Ri(Φ,Θ), i = 1, . . . , r with
nonnegative regularization coefficients τi:

R(Φ,Θ) =

r∑

i=1

τiRi(Φ,Θ), L(Φ,Θ) +R(Φ,Θ) → max
Φ,Θ

. (4)

The Karush–Kuhn–Tucker conditions for (4), (3) give (under some technical
restrictions) the necessary conditions for the local maximum in a form of the
system of equations (Vorontsov and Potapenko, 2014a):

ptdw =
φwtθtd

∑

s∈T φwsθsd
; (5)

φwt ∝

(

nwt + φwt

∂R

∂φwt

)

+

; nwt =
∑

d∈D

ndwptdw; (6)

θtd ∝

(

ntd + θtd
∂R

∂θtd

)

+

; ntd =
∑

w∈d

ndwptdw; (7)

where (z)+ = max{z, 0}. Auxiliary variables ptdw are interpreted as conditional
probabilities of topics for each word in each document, ptdw = p(t | d, w).

The system of equations (5)–(7) can be solved by various numerical methods.
Particularly, the simple-iteration method is equivalent to the EM algorithm,
which is typically used in practice. The pseudocode of Algorithm 2.1 shows its
rational implementation, in which E-step (5) is incorporated into M-step (6)–(7),
thus avoiding storage of 3D-array ptdw.

The strength of ARTM is that each additive regularization term results in
a simple additive modification of the M-step. Many models previously developed
within Bayesian framework can be easier reinterpreted, inferred and combined
using ARTM framework (Vorontsov and Potapenko, 2014a,b).
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Algorithm 2.1: The regularized EM-algorithm for ARTM.

Input: document collection D, number of topics |T |;
Output: Φ, Θ;

1 initialize vectors φt, θd randomly;
2 repeat

3 nwt := 0, ntd := 0 for all d ∈ D, w ∈ W , t ∈ T ;
4 for all d ∈ D, w ∈ d
5 p(w | d) :=

∑

t∈T
φwtθtd;

6 increase nwt and ntd by ndwφwtθtd/p(w | d) for all t ∈ T ;

7 φwt ∝
(

nwt + φwt
∂R

∂φwt

)

+

for all w ∈ W , t ∈ T ;

8 θtd ∝
(

ntd + θtd
∂R
∂θtd

)

+

for all t ∈ T , d ∈ D;

9 until Φ and Θ converge;

To find a reasonable number of topics we propose to start from a wit-
tingly large number and gradually eliminate insignificant or excessive topics
from the model. To do this we perform the entropy-based sparsing of distribu-
tion p(t) =

∑

d p(d)θtd over topics by maximizing KL-divergence between p(t)
and the uniform distribution over topics (Vorontsov and Potapenko, 2014b):

R(Θ) =
n

|T |

∑

t∈T

ln
∑

d∈D

p(d)θtd → max .

Substitution of this regularizer into the M-step equation (7) gives

θtd ∝
(

ntd − τ
n

|T |

nd

nt

θtd

)

+
.

Replacing θtd in the right-hand side by its unbiased estimate ntd

nd

gives an in-
terpretation of the regularized M-step as a row sparser for the matrix Θ:

θtd ∝ ntd

(

1− τ
n

|T |nt

)

+
.

If nt counter in the denominator is small, then all elements of a row will be set
to zero, and the corresponding topic t will be eliminated from the model. Values
τ are normally in [0, 1] due to the normalizing factor n

|T | .

Our aim is to understand how the entropy-based topic sparsing works and to
study its behavior in combinations with other regularizers. We use a set of three
regularizers — sparsing, smoothing and decorrelation proposed in (Vorontsov
and Potapenko, 2014a) to divide topics into two types, T = S ⊔B: domain-
specific topics S and background topics B.

Domain-specific topics t ∈ S contain terms of domain areas. They are sup-
posed to be sparse and weakly correlated, because a document is usually related
to a small number of topics, and a topic usually consists of a small number of
domain-specific terms. Sparsing regularization is based on KL-divergence maxi-
mization between distributions φwt, θtd and corresponding uniform distributions.
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Decorrelation is based on covariance minimization between all topic pairs and
helps to exclude common lexis from domain-specific topics (Tan and Ou, 2010).

Background topics t ∈ B contain common lexis words. They are smoothed
and appear in many documents. Smoothing regularization minimizes KL-
divergence between distributions φwt, θtd and corresponding uniform distribu-
tions. Smoothing regularization is equivalent to a maximum a posteriori estima-
tion for LDA, Latent Dirichlet Allocation topic model (Blei et al, 2003).

The combination of all mentioned regularizers leads to the M-step formulas:

φwt ∝
(

nwt − β0 βw[t∈S]
︸ ︷︷ ︸

sparsing
specific
topic

+ β1βw[t∈B]
︸ ︷︷ ︸

smoothing
background

topic

− γ [t∈S] φwt

∑

s∈S\t

φws

︸ ︷︷ ︸

topic decorrelation

)

+
; (8)

θtd ∝
(

ntd − α0 αt[t∈S]
︸ ︷︷ ︸

sparsing
specific
topic

+ α1αt[t∈B]
︸ ︷︷ ︸

smoothing
background

topic

− τ [t∈S]
n

|T |

nd

nt

θtd

︸ ︷︷ ︸

topic
selection

)

+
; (9)

where regularization coefficients α0, α1, β0, β1, γ, τ are selected experimentally,
distributions αt and βw are uniform.

3 Number of Topics Determination

In our experiments we use NIPS dataset, which contains |D| = 1740 English ar-
ticles from the Neural Information Processing Systems conference for 12 years.
We use the version, preprocessed by A. McCallum in BOW toolkit (McCallum,
1996), where changing to low-case, punctuation elimination, and stop-words re-
moval were performed. The length of the collection in words is n ≈ 2.3 · 106 and
the vocabulary size is |W | ≈ 1.3 · 104.

In order to assess how well our approach determines the number of topics,
we generate semi-real (synthetic but realistic) datasets with the known number
of topics. First, we run 500 EM iterations for PLSA model with T0 topics on
NIPS dataset and generate synthetic dataset Π0 = (n0

dw) from Φ,Θ matrices of
the solution: n0

dw = nd

∑

t∈T φwtθtd. Second, we construct a parametric family
of semi-real datasets Πα = (nα

dw) as a mixture nα
dw = αndw + (1− α)n0

dw, where
Π1 = (ndw) is the term counters matrix of the real NIPS dataset.

From synthetic to real dataset. Fig. 1 shows the dependence of revealed number
of topics on the regularization coefficient τ for two families of semi-real datasets,
obtained with T0 = 50 and T0 = 25 topics. For synthetic datasets ARTM reliably
finds the true number of topics for all τ in a wide range. Note, that this range
does not depend much on the number of topics T0, chosen for datasets generation.
Therefore, we conclude that an approximate value of regularization coefficient
τ = 0.25 from the middle of the range is recommended for determining number
of topics via our approach.
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Fig. 1. ARTM for semi-real datasets with T0 = 50 (left) and T0 = 25 (right).

However as the data changes from synthetic Π0 to real Π1, the horizontal part
of the curve diminishes, and for NIPS dataset there is no evidence for the “best”
number of topics. This corresponds to the intuition that real text collections
do not expose the “true number of topics”, but can be reasonably described by
models with different number of topics.

Comparison of ARTM and HDP models. In our experiments we use the im-
plementation1 of HDP by C. Wang and D. Blei. Fig. 2(b) demonstrates that the
revealed number of topics depends on the parameter of the model not only for
ARTM approach (Fig. 1, α = 1 case), but for HDP as well. Varying the concen-
tration coefficient γ of Dirichlet process, we can get any number of topics.

Fig. 2(a) presents a bunch of curves, obtained for several random starts of
HDP with default γ = 0.5. Here we observe the instability of the method in two
ways. Firstly, there are incessant fluctuations of number of topics from itera-
tion to iteration. Secondly, the results for several random starts of the algorithm
significantly differ. Comparing Fig. 2(a) and Fig. 2(c) we conclude that our ap-
proach is much more stable in both ways. The numbers of topics, determined by
two approaches with recommended values of parameters, are similar.

Elimination of linearly dependent topics. One more important question is which
topics are selected for exclusion from the model. To work it out, we extend the
synthetic dataset Π0 to model linear dependencies between the topics. 50 topics
obtained by PLSA are enriched by 20 convex combinations of some of them; and
new vector columns are added to Φ matrix. The corresponding rows in Θ matrix
are filled with random values drawn from a bag of elements of original Θ, in order
to make values in the new rows similarly distributed. These matrices are then
used as synthetic dataset for regularized EM-algorithm with topic selection to
check whether original or combined topics remain. Fig. 2(d) demonstrates that
the topic selection regularizer eliminates excessive linear combinations, while
more sparse and diverse topics of the original model remain.

1 http://www.cs.princeton.edu/∼chongw/resource.html.
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(c) ARTM, τ = 0.25: random starts.
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Fig. 2. ARTM and HDP models for determining number of topics.

4 Topic Selection in a Sparse Decorrelated Model

The aim of the experiments in this section is to show that the proposed topic
selection regularizer works well in combination with other regularizers. The topic
model quality is evaluated by multiple criteria.

The hold-out perplexity P = exp
(
− 1

n
L(Φ,Θ)

)
is the exponential average of

the likelihood on a test set of documents; the lower, the better.
The sparsity is measured by the ratio of zero elements in matrices Φ and Θ

over domain-specific topics S.
The background ratio B = 1

n

∑

d∈D

∑

w∈d

∑

t∈B ndwp(t | d, w) is a ratio of
background terms over the collection. It takes values from 0 to 1. If B → 0
then the model doesn’t distinguishes common lexis from domain-specific terms.
If B → 1 then the model is degenerated, possibly due to excessive sparsing.

The lexical kernel Wt of a topic t is a set of terms that distinguish the topic t

from the others: Wt = {w : p(t |w) > δ}. In our experiments δ = 0.25. We use
the notion of lexical kernel to define two characteristics of topic interpetability.

The purity
∑

w∈Wt
p(w | t) shows the cumulative ratio of kernel in the topic.

The contrast 1
|Wt|

∑

w∈Wt
p(t |w) shows the diversity of the topic.

The coherence of a topic C k
t = 2

k(k−1)

∑k−1
i=1

∑k

j=i PMI(wi, wj) is defined as

the average pointwise mutual information over word pairs, where wi is the i-th
word in the list of k most probable words in the topic. Coherence is commonly
used as the interpretability measure of the topic model (Newman et al, 2010).
We estimate the coherence for top-10, top-100, and besides, for lexical kernels.
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Fig. 3. Baseline: LDA topic model.
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Fig. 4. Combination of sparsing, decorrelation, and topic selection.
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Fig. 5. Sequential phases of regularization.

Finally, we define the corresponding measures of purity, contrast, and coher-
ence for the topic model by averaging over domain-specific topics t ∈ S.

Further we represent each quality measure of the topic model as a function
of the iteration step and use several charts for better visibility. Fig. 3 provides
such charts for a standard LDA model, while Fig. 5 and Fig. 4 present regularized
models with domain-specific and background topics. We use constant parameters
for smoothing background topics |S| = 10, αt = 0.8, βw = 0.1.
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The model depicted in Fig. 4 is an example of simultaneous sparsing, decorre-
lating and topic selection. Decorrelation coefficient grows linearly during the first
60 iterations up to the highest value γ = 200000 that does not deteriorate the
model. Topic selection with τ = 0.3 is turned on later, after the 15-th iteration.
Topic selection and decorrelation are used at alternating iterations because their
effects may conflict; in charts we depict the quality measures after decorrelating
iterations. To get rid of insignificant words in topics and to prepare insignificant
topics for further elimination, sparsing is turned on staring from the 40-th iter-
ation. Its coefficients αt, βw gradually increase to zeroize 2% of Θ elements and
9% of Φ elements each iteration. As a result, we get a sequence of models with
decreasing number of sparse interpretable domain-specific topics: their purity,
contrast and coherence are noticeably better then those of LDA topics.

Another regularization strategy is presented in Fig. 5. In contrast with the
previous one, it has several sequential phases for work of different regularizers.
Firstly, decorrelation makes topics as different as possible. Secondly, topic selec-
tion eliminates excessive topics and remains 80 topics of 150. Note, that in spite
of small τ = 0.1, many topics are excluded at once due to the side effect of the
first phase. The remained topics are significant, and none of them manage to be
excluded later on. The final phase performs both sparsing and decorrelating of
the remained topics to successfully improve their interpretability.

It is curious that the number of topics 80, determined by this strategy, corre-
sponds to the results of the previous strategy quite well. In Fig. 4 we observe two
regions of perplexity deterioration. The first one concerns Θ sparsing; after that
the perplexity remains stable for a long period till the 150-th iteration, when
the number of topics becomes less than 80. This moment indicates that all the
remained topics are needed and should not be further eliminated.

5 Conclusions

Learning a topic model from text collection is an ill-posed problem of stochastic
matrix factorization. Determining the number of topics is an ill-posed prob-
lem too. In this work we develop a regularization approach to topic selection in
terms of non-Bayesian ARTM framework. Starting with excessively high number
of topics we gradually make them more and more sparse and decorrelated, and
eliminate unnecessary topics by means of entropy regularization. This approach
gives more stable results than HDP and during one learning process generates a
sequence of models with quality measures trade-off. The main limitation, which
should be removed in future work, is that regularization coefficients are not opti-
mized automatically, and we have to choose the regularization strategy manually.
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