Text preprocessing

Victor Kitov

v.v.kitov@yandex.ru

Text mining

- In text mining feature space is usually high dimensional and sparse.
- To handle sparsity design matrix X may be stored in *sparse matrix format*.
- Linear models work well in high dimensional spaces
 - models are already complex due to many features
 - non-linear models have much more parameters and overfit
- Examples of linear models:
 - regression: linear regression with different regularization
 - classification: logistic regression, SVM
- We may also use arbitrary models in diminished feature space with
 - feature extraction (using, for example, PCA)
 - feature selection (using correlation, mutual information, etc.)

Split documents into individual tokens.

- tokens may be words or symbol sequences
- may or may not include punctuation

Split documents into individual tokens.

- tokens may be words or symbol sequences
- may or may not include punctuation

2 Form the set of all distinct tokens $\{t_1, t_2, ...\}$.

- ignore stop-words (exact list depends on the application)
- ignore tokens which are too rare and too frequent
- account only for particular parts of speech (nouns, adjectives? verbs? ...)

Split documents into individual tokens.

- tokens may be words or symbol sequences
- may or may not include punctuation

2 Form the set of all distinct tokens $\{t_1, t_2, ...\}$.

- ignore stop-words (exact list depends on the application)
- ignore tokens which are too rare and too frequent
- account only for particular parts of speech (nouns, adjectives? verbs? ...)
- May add bigram/trigram collocations

Split documents into individual tokens.

- tokens may be words or symbol sequences
- may or may not include punctuation

2 Form the set of all distinct tokens $\{t_1, t_2, ...\}$.

- ignore stop-words (exact list depends on the application)
- ignore tokens which are too rare and too frequent
- account only for particular parts of speech (nouns, adjectives? verbs? ...)
- May add bigram/trigram collocations
- May normalize words:
 - stemming
 - faster
 - Iemmatization
 - more accurate

Table of contents

- 2 Standard document representations
- 3 Common problems in NLP
- 4 Word embeddings
- 6 Regularities in embedded space

- Collocations are words that too frequently co-appear in text.
- Examples: New York, fast food, vice president, stock exchange, real estate, deja vu...

Collocations extraction: t-test

• t-test for checking co-occurence of $w_i w_j$:

• define
$$x = \mathbb{I}[w_i w_j]$$

• $\overline{x} = \frac{\#[w_i w_j]}{N}$, where *N* is text length

• test statistic:

$$\frac{\overline{\boldsymbol{x}} - \mu}{\sqrt{\boldsymbol{s}^2/\boldsymbol{N}}} \rightarrow \textbf{Student}(\boldsymbol{N} - 1) \rightarrow \textbf{Normal}(0, 1) \text{ for } \boldsymbol{N} \rightarrow \infty$$

• where $\mu = \rho(w_i)\rho(w_j) = \frac{\#[w_i]}{N} \frac{\#[w_j]}{N}$ - expected co-occurence, given independence assumption.

•
$$s^2 = \overline{x}(1 - \overline{x})$$
 - sample variance.

• to be a collocation test statistic should be large.

Collocations

Collocations extraction: PMI

• Pointwise mutual information:

$$\mathcal{PMI}(w_iw_j) = rac{
ho(w_iw_j)}{
ho(w_i)
ho(w_j)}$$

Collocations extraction: χ^2 Person test

χ^2 Pearson test for independence:

$$TS = N \frac{\left[p(w_i w_j) - p(w_i) p(w_j) \right]^2}{p(w_i) p(w_j)} + N \frac{\left[p(w_i \overline{w}_j) - p(w_i) p(\overline{w}_j) \right]^2}{p(w_i) p(\overline{w}_j)} + N \frac{\left[p(\overline{w}_i w_j) - p(\overline{w}_i) p(w_j) \right]^2}{p(\overline{w}_i) p(w_j)} + N \frac{\left[p(\overline{w}_i \overline{w}_j) - p(\overline{w}_i) p(\overline{w}_j) \right]^2}{p(\overline{w}_i) p(\overline{w}_j)}$$

$$TS \approx N \frac{\left[p(w_i w_j) - p(w_i) p(w_j) \right]^2}{p(w_i) p(w_j)}$$

$$TS \sim \chi^2(1)$$

Standard document representations

Table of contents

Collocations

2 Standard document representations

- 3 Common problems in NLP
- Word embeddings
- 6 Regularities in embedded space

Standard document representations

Term frequency

- Term-frequency model: $TF(i) = \frac{n_i}{n}$
 - n_i is the number of times t_i appeared in d
 - *n* total number of tokens in *d*.
- TF(i) measures how common is token t_i in the document.
- To make TF(i) less skewed it is usually calculated as

$$TF(i) = ln\left(1+\frac{n_i}{n}\right)$$

Inverted document frequency

- Inverted document frequency: $IDF(i) = \frac{N}{N_i}$
 - N total number of documents in the collection
 - N_i number of documents, containing token t_i .
- *IDF*(*i*) measures how specific is token *i*.
- To avoid skewness IDF is more frequently used as

$$IDF(i) = \ln\left(1 + \frac{N}{N_i}\right)$$

Vector representation of documents

- Consider document *d* and its feature representation *x*.
- Indicator model: $x^i = \mathbb{I}[t_i \in d]$.
- TF model: $x^i = TF(i)$
- TF-IDF model: $x^i = TF(i) * IDF(i)$
- Several representations, indexed by $I_1, I_2, ... I_K$ can be united into single feature representation.

Different account for different features

• Optimization task with regularization:

$$\sum_{n=1}^{N} \mathcal{L}(\widehat{y}_n, y_n | w) + \lambda R(w) \to \min_{w}$$

• Here λ controls complexity of the model:

Different account for different features

• Optimization task with regularization:

$$\sum_{n=1}^{N} \mathcal{L}(\widehat{y}_n, y_n | \boldsymbol{w}) + \lambda \boldsymbol{R}(\boldsymbol{w}) \rightarrow \min_{\boldsymbol{w}}$$

• Here λ controls complexity of the model: $\uparrow \lambda \Leftrightarrow$ complexity \downarrow .

Different account for different features

• Optimization task with regularization:

$$\sum_{n=1}^{N} \mathcal{L}(\widehat{y}_n, y_n | w) + \lambda R(w) \to \min_{w}$$

- Here λ controls complexity of the model: $\uparrow \lambda \Leftrightarrow$ complexity \downarrow .
- Suppose we have K groups of features with indices:

$$I_1, I_2, \ldots I_K$$

• We may control the impact of each group on the model:

$$\sum_{n=1}^{N} \mathcal{L}(\widehat{y}_n, y_n | w) + \lambda_1 R(\{w_i | i \in I_1\}) + \ldots + \lambda_K R(\{w_i | i \in I_K\}) \to \min_{w}$$

- $\lambda_1, \lambda_2, ... \lambda_K$ can be set using cross-validation.
- Scikit-learn allows to set only single λ. But we can control impact of each feature group by different feature scaling.

Common problems in NLP

Table of contents

Collocations

- 2 Standard document representations
- Common problems in NLP
- Word embeddings
- 5 Regularities in embedded space

Common problems in NLP

Common problems in NLP

Syntax problems:

- POS-tagging
- Sentence syntax parsing
- Coreference resolution
- Named entity resolution

Common problems in NLP

Sentence syntax parsing

Common problems in NLP

Common problems in NLP

Semantic problems:

- Question answering
- Paraphrase detection
- Chatbots & dialog systems
- Named entity resolution
- Text summarization
- Machine translation
- Topic modeling

Word embeddings

Table of contents

Collocations

2 Standard document representations

3 Common problems in NLP

Word embeddings

5 Regularities in embedded space

Word embeddings

Word embeddings

- Distributional hypothesis: similar context leads to similar meaning.
- Form co-occurence matrix $M = \{m_{wc}\}_{w \in W, c \in 2W}$
 - rows: words w
 - columns: counts of words co-occuring with w in the context
 - Ieft context
 - right context
- We can get reduced word representation with reduced SVD:

$$M = U_K \Sigma_K V_K^T$$

• Rows of U_K give compact word representations.

Word embeddings

- gensim.models.word2vec
- Word2vec tool & precomputed representations

Word embeddings

Continious bag of words (CBOW)

Word embeddings

Continious bag of words (CBOW)

Task: predict current word given context.

$$\frac{1}{T}\sum_{t=1}^{T}\ln\rho(w_t|w_{t-c},..w_{t-1},w_{t+1},...w_{t+c},\theta) \to \max_{\theta}$$

where $\tilde{v}_{context} = \sum_{t-c \leq \tau \leq t+c, \ \tau \neq t} \tilde{v}_{w_{\tau}}$ and

$$p(w_O|w_{t-c}, ...w_{t-1}, w_{t+1}, ...w_{t+c}, \theta) = \frac{\exp(v_{w_0}^T \tilde{v}_{context})}{\sum_{w=1}^W \exp(v_{w_0}^T \tilde{v}_{context})}$$

Word embeddings

Skip-gram model¹

¹Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Distributed Representations of Words and Phrases and their Compositionality. NIPS, 1–9.

Word embeddings

Skip-gram model

• Task: predict context, given current word:

$$\frac{1}{T}\sum_{t=1}^{T}\sum_{-c\leq j\leq c,\,j\neq 0}\ln\rho(w_{t+j}|w_t,\theta)\rightarrow\max_{\theta}$$

where \boldsymbol{W} - number of words in the vocabulary and

$$\rho(w_O|w_I) = \frac{\exp(\mathbf{v}_{w_0}^T \mathbf{v}_{w_I})}{\sum_{w=1}^{W} \exp(\mathbf{v}_{w_O}^T \mathbf{v}_I)}$$

Word embeddings

Optimizations

$$\rho(w_O|w_I) = \frac{\exp(v_{w_0}^T v_{w_I})}{\sum_{w=1}^W \exp(v_{w_O}^T v_I)}$$

- Summation over all words in vocabulary is impractical.
- Two optimization approaches:
 - hierarchical soft-max
 - calculates probabilities in $O(\log_2 W)$
 - negative sampling
 - uses different optimization criteria

Word embeddings

Hierarchical softmax

- Form a binary tree with words as leaves.
- For each node associate probabilities to follow each child node.
- Probability of a word = probability of path to the word.

Word embeddings

Hierarchical softmax

• Consider word w:

- let n(w, j) be the *j*-th node on the path
- let L(w) the length of the path to leaf w:

$$n(w, L(w)) = w$$

• define
$$[x] = egin{cases} +1, & ext{if } x ext{ is satisfied} \\ -1 & ext{if } x ext{ is not satisfied} \end{cases}$$

$$p(w|w_l) = \prod_{j=1}^{L(w)-1} \sigma([n(w, j+1) = \text{left child } n(w, j)]\tilde{v}_{n(w, j)}^T v_{w_l})$$

Word embeddings

Hierarchical softmax

Comments:

- for balanced tree height is log₂ W
- each node *n* is associated internal parameter \tilde{v}_n
- there are W 1 internal parameters in total.
- Huffman tree assigns short codes for frequent words
 - faster

Word embeddings

Negative sampling

- $P_n(w)$ noise distribution
- Task: differentiate true (word/context) pairs from noisy ones.
- Formalization:

$$\sum_{w_l} \left\{ \ln \sigma(\tilde{\mathbf{v}}_{W_O} \mathbf{v}_{w_l}) + \sum_{k=1}^{K} \mathbb{E}_{w_k \sim \mathcal{P}_n(w)} \left[\ln \sigma(-\tilde{\mathbf{v}}_{w_k}^T \mathbf{w}_{w_l}) \right] \right\} \to \max_{\mathbf{v}, \tilde{\mathbf{v}}}$$

• $P_n(w)$ - random unigram word sampling

Regularities in embedded space

Table of contents

Collocations

- 2 Standard document representations
- 3 Common problems in NLP
- Word embeddings

Regularities in embedded space

Regularities in vector space²

²From NIPS presentation of Tomas Mikolov

Regularities in embedded space

Regularities in vector space

Regularities in embedded space

Regularities in vector space

Regularities in embedded space

Regularities in vector space

Regularities in embedded space

Regularities in vector space³

³Images were manually rotated and scaled.

35/35