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KoHdepeHumna ECCV'14

on and budget

ECCV 2014 registrati

. 1462 people registered online
(incl. 100+ workshop only)
e 46 people registered on site until yes

. About 100 student/postdoc helpers and chairs

terday

. Total budget about 1IMCHF
 About 100kCHF corporate sponsoring




KondbepeHuma ECCV’14

ECCV 2014 - Some Numb

. 1444 complete submissions
» thanks to all authors !

e 363 (27%) papers accepted

» 325 (24%) accepted as posters

» 38 ( 3%) accepted for oral presentation
» (85 rejected without review)

e Multi-stage process
» over 1000 reviewers

» 53 Area Chairs

ECCV 2014 - PC-Chairs




OCHOBHbIe TeMbl, K/toueBble C10Ba U TeHAEHLU UM

e Convolution networks, Deep learning, Sparse coding, Image Retrieval

e Structure-from-Motion, SLAM, 3DFlow

 3D-data, RGBD-data, 4D-data

* Segmentation, Video Segmentation, MRF, CRF, Energy, Graphical Models, Superpixels
* Multi-Tracking, Human/Pedestrian Detection

 Human pose estimation, Human Action Detection and Prediction

e Crowd behavior, Group analysis

e Saliency

* Part-Based Deformable Models

* Face Detection, Alignment, Recognition

* Shape Analysis, Laplace-Beltrami operators, Manifolds

* Symmetric Positive Definite (SPD) matrices, Riemannian Manifolds, Grassmann manifolds
 Benchmarks

 UAVs, Fish-eye cameras, Unmanned Cars

OTaenbHble MHTEpPECHble PaboTbl N pe3yabTaThl

* Picture and Video Annotation, Image Tags, Video Tags
* Deblurring

* |Image Matching and Fusion

e Super-resolution

* Intelligent Lighting



CoaepXaHue npeseHTauum

PeKoHcTpyKumna 3D cueHbl U HaBUrauma B HeM:
Structure-from-Motion, SLAM, Road Scene
Understanding and Autonomous Driving

MoHnmaHue Tunosoro sugeoctoxketa: Multi-Tracking,
Human Detection, Human pose estimation, Human
Action Detection and Prediction, Crowd behavior, Group
analysis, Face Detection and Recognition
PacnosHaBaHue usobpaxkeHun: Convolution networks,
Deep learning, Sparse coding, Image Retrieval
3putenbHoe BHMMaHue: Saliency

CermeHTauma: Image, Video & 3D Segmentation, MRF,
Energy-based, Graphical Models, Superpixels, 3D-Flow
d®opma: Morphology, Shape Analysis, Manifolds, SPD
KoHTponb pe3ynbraTtoB U ypoBeHb 3agaa4: Benchmarks



PeKoHcTpYyKUMA 3D cueHbl u
HaBUrauua B HEWU:
Structure-from-Motion,

SLAM, Road Scene

Understanding and
Autonomous Driving



Structure-from-Motion

e Structure-from-Motion — TexHonorma pekoHcTpyKkummn 3D cueHbl Ha OCHOBE
MHO>eCTBa Pa3HOPaKYPCHbIX CHUMKOB U OLLIEHKWN NONOXKeHUA/napameTpos
OTHOCUTE/IbHOW OPUEHTALUN CHUMKOB

@y A @G FE GG O D

Building Rome in a day. ICCV 2009 Boujou

e bubnnortekn — Bundler, CMVS, PMVS u T1.4.

Mo matepunanam A. C. KOHyLWwKnHa



Structure-from-Motion

* Structure-from-Motion — TexHonorms pekoHcTpyKummn 3D cueHbl Ha OCHOBE
MHO>eCTBa Pa3HOPaKYPCHbIX CHUMKOB U OLLIEHKWN NONOXKeHUA/napameTpos
OTHOCUTE/IbHOW OPUEHTALUN CHUMKOB

Scene Chronology. Kevin Matzen, Noah Snavely. ECCV2014

Mo matepunanam A. C. KOHyLWwKnHa



SLAM

* SLAM — TexHon0rma ogHOBPEMEHHOM PEKOHCTPYKUMUM 3D CUEHbl M OLEHKHN
No/IoXKeHuA/NapameTpoB ABUMKEHUSA Kamepbl

4ol . Y. | ot .
e i P LR R (1 ¥ bl
¢ i )

LSD-SLAM: Large-Scale Direct Monocular SLAM,
Jakob Engel and Thomas Schops and Daniel Cremers, ECCV’14



Tracking
p
New Image
(640 x 480 at 30Hz)
b

Track on Current KF:

— estimate SE(3) transformation

ra(p.€)
min Pl
£ese(3) p ro(p.£) |5

* tracking reference

SLAM

e SLAM — TexHON0rna 0AHOBPEMEHHOM PEKOHCTPYKUMM 3D cueHbl U OLLEeHKHN
nonoxeHunsa/napameTpoB ABUMKEHUA Kamepbl

Create New KF

—+ propagate depth map
to new frame

—+ regularize depth map

Refine Current KF
— small-haseline steren
— probabilistically

merge into KF

— regularize depth map

* replace KF

Current KF

e e e e e e e =

¢ refine KF

-

LSD-SLAM: Large-Scale Direct Monocular SLAM,

Jakob Engel and Thomas Schops and Daniel Cremers, ECCV’14

,‘ add to map

min
Ecsim(3) §

Add KF to Map

—+ find closest kevirames
— estimate Sim(3) edges

2 (p.£) N ri(p.£)

Z =z
Trpm.g)  Tryp.g)

&




SLAM

* SLAM — TexHOoN0rMa 0AHOBPEMEHHOM PEKOHCTPYKUMM 3D CUEHbl U OLEHKHN
nonoxeHunsa/napameTpoB ABUMKEHUA Kamepbl

Video Registration to SfM Models,
Till Kroeger and Luc Van Gool, ECCV’'2014



Object-level SLAM

Towards real-time, dense tracking, reconstruction and scene understanding,
A. Davison, PCV’'14




Pacno3HaBaHMe XapaKTePHbIX 31eMeHTOB ropoacKomn
cpeabl ANA NPUBA3KN BUAEOOAHHbIX K KapTe

1) GIS-Assisted Object Detection and Geospatial Localization,

Shervin Ardeshir, Amir Roshan Zamir, Alejandro Torroella, and Mubarak Shah, ECCV’14
2) Augmenting vehicle localization accuracy with cameras and 3D road infrastructure
database, Lijun Wei, Bahman Soheilian, Valerie Gouet-Brunet, ECCV'14, W02



Pacno3HaBaHue XdpPaKTePHbIX 91eMeHTOB I'OpO,EI,CI-(OI\/Il
cpeabl ANAa NpmMBA3IKUN BUAEOOAHHbLIX K KapTe

Capture positions
from GPS

avg. scale = 13

4

'l
.

=" +3 07

| average feature i
H . ]
| scale difference :

¥

DTW cost
measure used for
matching images

Lowest average scale
difference—» Image match

@& avg. scale = 10 \

Location estimate from
matching Street Map
image's GPS position

Query Image

Localized
image

o

e

Vision-based Vehicle Localization using a Visual Street Map with Embedded SURF Scale,
David Wong, Daisuke Deguchi, Ichiro Ide, and Hiroshi Murase, ECCV’14, W02



Pacno3HaBaHMe XxapaKTepPHbIX 31€MEHTOB ropoACKOWM
cpeabl ANA NPUBA3KU BUAEOAAHHbIX K KapTe

Fig. 5. Example of successful image matching when occlusions occur in either the query
image or street map image.

Vision-based Vehicle Localization using a Visual Street Map with Embedded SURF Scale,
David Wong, Daisuke Deguchi, Ichiro Ide, and Hiroshi Murase, ECCV’14, W02



Pacno3HaBaHMe XxapaKTepPHbIX 31€MEHTOB ropoaCKOWM
cpeabl ANA NPUBSA3KU BUAEOAAHHbIX K KapTe

BISCUIT

Deep Features for Text Spotting,
Max Jaderberg, Andrea Vedaldi, and Andrew Zisserman, ECCV’'14
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SLAM, Autonomous Driving

Lt N

Infrared sensors

Towards real-time, dense tracking, reconstruction and scene understanding,

A. Davison, PCV’'14




SLAM, UAYV, Fish-eye Camera

UIre 0 0
o
g : d dOMeE

In this talk:

|
» Omnidirectional visual odometry system T
| Gwai-frequency GRS sntenns (3G+0) WMM - Y . u
- R D T NNl
s i n
g ! Al "
1 (10
£ ‘ { i :
—\i = Y
i
) g / p
: %
N M i .
[N = /A V7

) . 4 q‘w‘o\il‘»\h\||>“m. |..‘ ‘ "H -
» Four image streams (synchronized tkne of exposure) I
» Frame rate: 10Hz

» One frame consists of four images

» RTK-GPS information (direct geo-referenXing unit) [i/& o
» accuracy below 3 cm under good conditioks j T . ¢ ‘ o

i

>
I
i

Real-time Accurate Geo-localization of a MAV with Omnidirectional Visual
Odometry and GPS, Johannes Schneider and Wolfgang Forstner, ECCV’14, W02



Autonomous Driving

W15 Computer Vision for Road Scene
Understanding and Autonomous

Driving 1400 Invited Talk: Is the self-driving car around the corner?
Mobileye's work on Computer Vision centric approach
to self-driving at consumer level cost, Amnon Shashua,
MobilEye, Israel

1440 Demo Talk: Multi-Camera Systems in the V-Charge
Project: Fundamental Algorithms, Self Calibration, and
Long-Term Localization, Paul Furgale, ETH Zurich,
Switzerland

1500 Invited Talk: Intelligent Drive & Pedestrian Safety 2.0,
Dariu Gavrila, Daimler, Germany

.-

G2y speeg alkyratsq



Multi-Camera Systems in the V-Charge Project: Fundamental
Algorithms, Self Calibration, and Long-Term Localization,
Paul Furgale, ECCV’14, W15

) UNtves
\?@ o
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Autonomous Driving

9
|
Ing ray
Before obstacle Negative welght‘
Behind obstadle nosiive weight

Obstacle here weights fit best

Multi-Camera Systems in the V-Charge Project: Fundamental
Algorithms, Self Calibration, and Long-Term Localization,
Paul Furgale, ECCV’14, W15



Autonomous Driving
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Intelligent Drive & Pedestrian Safety 2.0,
Dariu Gavrila, ECCV’14, W15
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Pedestrian Safety 2.0




[lToHMMaHue TMNoOBOIo
Bugeoctoxera: Multi-Tracking,
Human Detection

Human pose estimation,
Human Action Detection and Prediction,

Crowd behavior, Group analysis



Multi-Tracking

* CucTembl aBTOMATUYECKOrO aHaN3a cneumanm3npoBaHHbIX BUAEOAAHHbIX
(Hanpumep, HEKOTOPbIX TUNOB COPTUBHbIX UTP)

(Milan, Roth, Schindler, 2014)



Multi-Tracking

* CucTembl aBTOMATUYECKOTO aHa/IN3a CNeLnaan3mMpoBaHHbIX BUAEOAAHHbIX
(Hanpumep, HEKOTOPbIX TUMNOB CMNOPTUBHbBIX UTP)

Hybrid Stochastic / Deterministic Optimization for Tracking Sports Players and Pedestrians,
Robert Collins, Penn State University; Peter Carr, Disney Research, ECCV’14



Multi-Tracking

D.f.. Af /D.’ _} DH’ D”.‘ AH’
(a) (b) (c)

Fig. 1. Stochastic Detection/Deterministic Tracking. (a) An initial set of de-
tections P’ has a corresponding optimal data association solution A’, shown here as
red and blue trajectories. However, due to detection noise, we may have mistakenly
swapped the identities of the two targets. (b) If we stochastically perturb the set of
detections to generate a new hypothesis D", it may lead (¢) to a better data association
solution A"”. Conceptually, we are decomposing the joint optimization of (D, .A) into a
stochastic proposal of multi-frame detections D and a deterministic solution for A|D
(similar to ‘line search’) given each such proposal.

(Collins, Carr, 2014)



Multi-Tracking

D* A*
DIZ .

stochastic
search

multi-frame
detections

deterministic data
solution associations

AD.2Z

Fig. 2. Hybrid Stochastic/Deterministic Optimization. The goal is to determine
the optimal set of detections D* and associations A* for observations Z. We factor the
joint optimization into stochastic search over detections D|Z interleaved with determin-
istic solutions for associations A|D, Z. Each hypothesized set of detections D’ results
in a reduced ‘line search’ for the corresponding best set of associations A’ (which has

a deterministic solution for energy functions of pairwise potentials).

(Collins, Carr, 2014)



Multi-Tracking

Fig. 3. Top row, left to right: color image I}; foreground mask F}, (also showing region
of interest); ground plane proposal map M. Bottom row: single frame detection results
overlaid on each form of observation data.

(Collins, Carr, 2014)



Multi-Tracking, Fusion

Overview
Observation:

Different object tracking algorithms have different, som

. etimes even contrary strengths.
Practically, even outdated methods can sometimes clearly outperform state-of-the-art methods.
Example: SMS performs much better than SCM on the lemmin

Idea:

E sequence. In average it is contrary, See figures,

* Create a fusion approach that outperforms tracking al
The Fusion Approach:

gorithms by fusing their results in a suitable way.

Our fusion approach performs considerably better than the best tracking algorithms used for fusion.

* The approach is very generic and only needs tracking results in the form of rectangular boxes as input.
We introduce a basic approach and extensions like dynamic programing based trajectory optimization.

* Online fusion is pessible. With trajectory optimization most discontinuities can be avoided - even online.
Our fusion approach often even outperforms the best tracking algorithm on a sequence (by up to 33%).

* Probably, our approach is also able to outperform future tracking algorithms by fusing their results.

A Superior Tracking Approach: Building a Strong Tracker through Fusion,
Christian Bailer, Alain Pagani, Didier Stricker, ECCV’14




Multi-Tracking, Fusion

Details of our Approach

Notation Tracking result: Ty, j € [1...M]

1

| Tracking result T, e.g. VDT |

| =—T——* Rectangular bounding
Input | | [Tracking result 7> e.g. MilTrack | | 'f"T?O boxes by 4
Tracking result T,e.g.Struck | | | |
{Tracking 2B > Frame:i € [1..N]
Output 4 [Fusionresult T° | | | | |

|

l % Rectangular boxes ¢}
Basic Approach

Idea: Use attraction fields between tracking results and find the position of maximum attraction.

Attraction does not require sequence dependent threshold parameters like our previous work [1].
The attraction energy for a candidate boxcina frame { is calculated as:

wf «——— wy; = 1 for the basic approach
a;(c) = ya d(bu,c)z R
The distance d(b;;.c) is calculated in the 4 dimensional (x,y,width,he'ig.htz ipace (see paper). o is a
constant that is useful for noise reduction. The (nearly final) fusion resultis: ¢f = ctgﬂx-x_nba:; (a;(c))-
Tracker Weights

: {
Trust algorithms more that perform on average better by weighting them. Let G! be the ground
lt?::h labeling for a sequence s at frame i. Then the weight wj is determined as:

1
w; = z d(cf_b“J)z +0

SES (EN

A Superior Tracking Approach: Building a Strong Tracker through Fusion,
Christian Bailer, Alain Pagani, Didier Stricker, ECCV’14




Multi-Tracking, Fusion

A Superior Tracking Approach: Building a Strong Tracker through Fusion,
Christian Bailer, Alain Pagani, Didier Stricker, ECCV’14




Multi-Tracking, Fusion

: : 3p3 d22
= ecformancelsnesstred I 3181988 H0, rithm on a sequence on 11,15,20,18 an
Our fusion approaches outperform the best tracking algo B e hest algorithm on a sequence

sequences respectively. They gain at least 95% of the performanc
on 25,27,33,35 and 34 sequences, respectively.

Success plots for OPE (and SRE,TRE). Our fusion approaches clearly outperform the best tracking
algorithms as well as our previous work. The figures show our fusion approaches, the 5 best and 2 worst
tracking algorithms and the average of all 29 tracker curves. The gray curves are theoretical bounds.

Runtime performance - - ; I
Overall runtime of the fusion based tracking Our trajectory Optimuatlo.n approaches
| approach for different tracking algorithm perform well here. The online ver-sion is
b closer to the ground truth than most

ctions (see paper]. :
m:h I5| m::mes,."sec. we can already outper tracking algorithms. The offline versions
form the best algorithm SCM. perform even better.

The best algarithm SCM (score: 0.5] can already be out:
performed with the 15 worst algorithms which have 3

<eare of only 0.21 - 0.36,

A Superior Tracking Approach: Building a Strong Tracker through Fusion,
Christian Bailer, Alain Pagani, Didier Stricker, ECCV’14




ObHapykeHue nroaen (newexonos)

State-of-Art:

(Felzenszwalb, Girshick, McAllester and Fé
Ramanan, 2010)

(Dollar, Wojek, Schiele, Perona, 2012)




ObHapykeHue nroaen (newexonos)

Ten years of pedestrian detection, what have we learned?
R. Benenson. et. Al, ECCV 2014

Mo matepunanam A. C. KOHyLWwKnHa



ObHapykeHue nroaen (newexonos)

| P —
e . .
.64 -~ KITTI Pedestrians, moderate difficulty
o i D Bt 1
50t B pAUC 54 49%
’ 40} - I DA-DPM 45.51%
) 88 4s°/° O I SquaresICF 44.42%
.30r R
o ——— 63.26% LatSvm-V2 Ll Il DPM 38.35%
v o0} 53.14% DBN-Isol | SubCat 38.02%
% ) = 50.17% Ours—SquaresChnFtrs (l) S
é 48.35% Roerei .g 05
— 37.87% SDN &
10+ 37.64% MT-DPM+Context
e 34.81% Ours—-SquaresChnFirs (C) '
——— 34.60% InformedHaar N
= = = = 31.28% Ours-SquaresChnFtrs+DCT 0.25
05+ = = == 30.34% Ours-SquaresChnFtrs+SDt
: = 29.42% Ours-SquaresChnFtrs+2Ped
e 22.49% Ours-Katamari-v1 . : \
-3 -2 = 0 1 0
10 10 10 10 10 0 0.2 0.4 0.6 08
false positives per image Recall

Figure 8: Pedestrian detection on
Figure 7: Some of the top quality detection the KITTI dataset.

methods for Caltech-USA. See section 4.2,

Ten years of pedestrian detection, what have we learned?
R. Benenson. et. Al, ECCV 2014

Mo matepunanam A. C. KOHyLWwKnHa



MpeackasaHmne noseaeHus nogen (newexonos)

* [lpeackasaHue nosegeHUA
noaen (newexonos):
MepengeT n newexop,
aopory?

Context-Based Pedestrian Path Prediction,
Kooij, Schneider, Flohr, and Gavrila, ECCV’14
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Context-Based Pedestrian Path Prediction,
Kooij, Schneider, Flohr, and Gavrila, ECCV’14



Crowd behavior, Group analysis

* OueHKa xapaKkTepa noBeaeHus rpynn Atoaen Uamn Toanbl
BblaeneHne 1 npocnexmnBaHue otae/bHbIX Ntogen B Tonne

Crowd Tracking with Dynamic Evolution of Group Structures,
Feng Zhu, Xiaogang Wang, and Nenghai Yu, ECCV’'14




Pe-naeHTUOUKaUMA ntoaen Npmu CbeMKe
B PA3/IMYHbIX YC/IOBUAX

VIPeR dataset PRID dataset

(T. Wang et al., 2014)



Pe-napeHTMdmnKauma ntoaem npm Cbemke
B PAa3/IMYHbIX YCNOBUAX

rVICTOI'paMMbI LUBETOBbIX N TEOMETPUHECKUX CBOWCTB

Salient Color Names for Person Re-identification,
Yang Yang, Jimei Yang, Junjie Yan, Shengcai Liao, Dong Yi, and Stan Z. Li1, ECCV’14



Pe-naeHTUOUKaUMA ntoaen Npmu CbeMKe
B PA3/IMYHbIX YC/IOBUAX

4

(c) Clothing similarity (d) Background clutter & occlusions

(T. Wang et al., 2014)



Pacno3HaBaHWe AencTBmMn noaen

A A ]

Action

Temporal Decomposition

]
v
»
<
-~
>
v
2
Spatial Decomposition
. T )
] g " ™
o 1 ; w .
: 2 ‘ ™
£ :
‘<‘ Body part: head Body part: elbow Body part: knee

Video Action Detection with Relational Dynamic-Poselets, L. Wang, Y. Qiao, and X. Tang, ECCV’14



Pacno3HaBaHue AencTBMN NtoaeEN

v

j1

Video Action Detection with Relational Dynamic-Poselets, L. Wang, Y. Qiao, and X. Tang, ECCV’14



Pacno3HaBaHMe B3aMMOAENCTBUIN NOAEN

Gnd truth Observation Simulation Gnd truth Observation Simulation
UT-Interaction 1 UT-Interaction 2
1
\'i AN/ M 7 3T
Depth Skeleton Gnd truth Observation Simulation
likely unlikely smooth abrupt attraction repulsion

Cooccurence Transition Symmetry

Action-Reaction: Forecasting the Dynamics of Human Interaction,
De-An Huang and Kris M. Kitani, ECCV’14



HOCTpOEHMe U UCMOoJZIb30BaHUE MNMPOCTPaAHCTBEHHO-
BpeMeEHHbLIX IOTUK U OHTONOINM anAa dHaJ1n3d
CNOXHbIX AUHAMUNYHECKUX CueH

¥ @ Video_Objects
¥ & Contextual_Objects
v @ Fixed_Objects
© Building
' Electric_Pole

© Equipement
@ Grass
@ Industructive_Panel
© Road
© Tree
© Zone
v @ Portable_Objects mHas_Same_Start_Position
@ Luggage ™ Has_Same_End_Position
@ Paper_Document m Has_Diff_Start_Position
® Phone_ m Has_Diff_End_Position
© Surveillance_Camera = Form_Final_Meta_Group
ve Moh_ile_ohjecls ™ Has_Started_Meta_Group
© Bicycle R
© Group_Of_Person -
@ Person = RepNumber
@ Truck = NumberGroup
v @ Vehicule m Start_Position uIIdin ""' a:'re y
o Car ®m End_Position lreez
¥ Service_Car =

'(;' .

o
© e

Restriciive
Road

Events detection using a video-surveillance Ontology and a rule-based approach,
Yassine Kazi Tani, Adel Lablack, Abdelghani Ghomari, and loan Marius Bilasco, ECCV’14



[MocTpoeHue N Ucnosib3oBaHMe NPOCTPAHCTBEHHO-
BPEeMEHHbIX IOTUK U OHTO/IOTUI ANS aHaNn3a
CNOMKHbIX AMHAMUYECKUNX CLEH

oY

Group walking, Group
running, Group merging
and Group splitting.

BB(?BBx), BB(?BBy), Frame(?F1), MBB(?MBB1), MBB(?MBB2), BB_Detected_In_Frame(?BBx, ?F1),
BB_Detected_In_Frame(?BBy, ?F1), BB_Bottom_Left_Point_Y(?BBx, ?h), BB_Bottom_Right_Point_Y(?BBy,
2d), BB_Number(?BBx, n4), BB_Number(?BBy, 5), BB_Top_Left_Point_X(?BBx, 7a),
BB_Top_Left Point_X(?BBy, 7?f), BB_Top_Left Point Y(?BBx, ?e), BB_Top_Left Point Y(?BBy, 7I),
BB_Top_Right_Point_X(?BBx, ?7j), BB_Top_Right_Point_X(?BBy, ?b), BB_Top_Right Point_Y(?BBy, 7c),
MBB_ID(?MBB1, ?n1), MBB_ID(?MBB2, ?n1), Number_BB_In_Frame(?F1, 2), Number_Frame(?F1, ?nl),
Number_MBB(?MBB1, 7n2), Number MBB(?MBB2, 7n3), add(?x2, ?b, 20), greaterThan(?a, 7b),
greaterThan(?h, 7d), greaterThan(?n3, ?n2), greaterThanOrEqual(?b, ?x1), greaterThanOrEqual(?e, ?c),
lessThanOrEqual(?a, ?x2), lessThanOrEqual(?e, ?d), subtract(?x1, ?a, 20), subtract(?z1, 7j, 7f), subtract(?z2,
7h, ) -> BB_Represent_MBB(?BBx, ?MBB1), BB_Represent MBB(7BBy, ?MBB1),
MBB_Detected_In_Frame(?MBB1, ?F1), MBB_H(?MBB1, ?z1), MBB_Top_Left Point X(?MBB1, 7f),
MBB_Top_Left_Point_Y(?MBB1, ?1), MBB_W(?MBB1, ?z2)

Events detection using a video-surveillance Ontology and a rule-based approach,
Yassine Kazi Tani, Adel Lablack, Abdelghani Ghomari, and loan Marius Bilasco, ECCV’14



ABTOMaTM4YeCKoe aHHOTH poOoBaHNE BUAOEOAdHHDbIX

C MCNnoJibsoBaHMem TeKCTOBbLIX Teros

Name assignment to tracks (Y)

Leonard looks at the robot, while the only

engineer in the room fixes it. He is amused. engineer in the room fixes it He is amused.

(a) One directional model (b) Bidirectional model I

Name assignment to mentions (Z)

&

Description
(deD)

| | "

EIA’

e reveal Lynette holding Porter by his Viissy points to the larger kid The big kid Cary eyes the siblings, as Alicia looks
feet, whlle he clings to Preston's desk. walks off. Other kids jeer. across the bullpen

Linking People in Videos with “Their” Names Using Coreference Resolution,
Vignesh Ramanathan, Armand Joulin, Percy Liang, and Li Fei-Fei, ECCV’14
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Face detection without bells and whistles.

M. Mathias. et. alECCV2014
Mo matepunanam A. C. KOHyLWwKnHa



Pacno3HaBaHMe NnL, B C/IOXKHbIX YC/10BUAX
CbEMKMU, MPU HU3KOM pa3peLleHnmn, npu
HaNNYNU MUMUNKU

Joint Cascade Face Detection and Alignment,
Dong Chen, Shaoging Ren, YichenWei, Xudong Cao, and Jian Sun, ECCV’2014
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Convolution networks, Deep learning, Image Retrieval
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|

RHUMAN VISUAL ™ -
RN RECOGNITION

Jé;“ N SCHMIDHUBER 2013
2011: First Superhuman Visual Pattern Recognition
twice better than humans
three times better than the closest artificial competitor
six times better than the best non-neural method

Jurgen Schmidhuber
http://people.idsia.ch/~juergen/deeplearning.html
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Convolution networks, Deep learning, Image Retrieval

The list of won competitions in Computer Vision:
9. MICCAI 2013 Grand Challenge on Mitosis
Detection

8. ICPR 2012 Contest on Mitosis Detection in
Breast Cancer Histological Images

7.1SBI 2012 Brain Image Segmentation Challenge
(with superhuman pixel error rate)

6. IJCNN 2011 Traffic Sign Recognition Competition
(only our method achieved superhuman results)
5. ICDAR 2011 offline Chinese Handwriting
Competition

4. Online German Traffic Sign Recognition Contest
3. ICDAR 2009 Arabic Connected Handwriting
Competition

2. ICDAR 2009 Handwritten Farsi/Arabic Character
Recognition Competition

1. ICDAR 2009 French Connected Handwriting
Competition. Compare the overview page on
handwriting recognition.

Records in important Machine
Learning (ML) benchmarks:

D. Chinese characters from the ICDAR
2013 competition (3755 classes)

C. The MNIST Handwritten Digits
Benchmark (perhaps the most
famous ML benchmark; we achieved
the 1st human-competitive result in
2011)

B. The CIFAR Image Classification
Benchmark

A. The NORB Stereo Vision Object

()

U Ve .}

http://people.idsia.ch/~juergen/deeplearning.html
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hyw,b(x)

ABTO3HKOAEP

Noeu Deep Learning
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Deep architecture: obyyeHne nocneaoBaTeNbHOCTN aBTOSHKOAEPOB

Noeu Deep Learning
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Input Features | Features Il Softmax
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Deep architecture: oby4yeHne MHOroC/IOMHOWM CETU aBTOSHKOAEPOB

Noeu Deep Learning
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Input Image X Output Labels
| | |
Coding Pooling Coding Pooling
-
—

Feature Extraction ®(x)

Apxuntektypa “Coding + Pooling” = “KognposaHune + ObbeanHeHne ”
(e.g., convolutional neural net, HMAX, BoW, ...)

- Coding: nonlinear mapping data into another feature space
- Better coding methods: sparse coding, RBMs, auto-encoders

Noeu Deep Learning (Kai Yu, 2012)
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Sparse coding (Olshausen & Field,1996). Originally
developed to explain early visual processing in the brain
(edge detection).

Training: given a set of random patches x, learning a
dictionary of bases [®, D, ...]

Coding: for data vector X, solve LASSO to find the
sparse coefficient vector a

2

k m k
min XI; —Zai,jgbj +)\ZZ|CLZ’J‘
. =1

i=1 j=1

Noeu Deep Learning (Kai Yu, 2012)
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[a,, .., ag] =[0,0,..,00.8,0,..,00.3,0,..,0,0.5, 0]
(feature representation)

Noeu Deep Learning (Kai Yu, 2012)
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Novel visualization technique )
ayerAbO\fe
that gives insight into the Reconstruction Switches

function of intermediate Max Unpooling @ O—ﬂ H Max Pooling

Pooled Maps

feature Iayers and the Unpoocled Maps Rectified Feature Maps
operation of the classifier. — 7 -
Rectified Linear Rectified Linear
Function @ Function
Rectified Unpooled Maps Feature Maps
Convolutional AN Convolutional
Filtering {F} Filtering {F}
A deconvnet Iayer (Ieft) Reconstruction Layer Below Pooled Maps
attached to a convnet layer o =
(rlght)' Layer Above P
Reco;ﬂ.srmction ’ | ooled Maps
The deconvnet will reconstruct Unpoohng @ Pooling
an approximate version of the Max Locations .=.|:|

convnet features from the layer |:|
be N eat h . ﬁ Unpooled Rectified ﬁ
Maps Feature Maps ﬂ

Visualizing and Understanding Convolutional Networks,
Matthew Zeiler and Rob Fergus, ECCV’'14
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A ...—"'
V1M
g | “'””HI! ,—

ﬂ(f“ 11 1

Visualization of features in a fully trained model. For layers 2-5 we show the top

9 activations in a random subset of feature maps across the validation data, projected
down to pixel space using our deconvolutional network approach. Our reconstructions
are not samples from the model: they are reconstructed patterns from the validation set
that cause high activations in a given feature map. For each feature map we also show
the corresponding image patches.

Visualizing and Understanding Convolutional Networks,
Matthew Zeiler and Rob Fergus, ECCV’14
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Visualizing and Understanding Convolutional Networks,
Matthew Zeiler and Rob Fergus, ECCV’14
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Visualizing and Understanding Convolutional Networks,
Matthew Zeiler and Rob Fergus, ECCV’14
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Object detection and part localizations Pose-normalized representation

Cneunduka 3agaum getanbHou Knaccupumkaumm o6beKkTos

The problem of visual fine-grained categorization can be extremely challenging
due to the subtle differences in the appearance of certain parts across related
categories. In contrast to basic-level recognition, fine-grained categorization aims
to distinguish between different breeds or species or product models, and often
requires distinctions that must be conditioned on the object pose for reliable
identification. Facial recognition is the classic case of fine-grained recognition,
and it is noteworthy that the best facial recognition methods jointly discover
facial landmarks and extract features from those locations.

Part-based R-CNNs for Fine-Grained Category Detection,
Ning Zhang, Jeff Donahue, Ross Girshick, Trevor Darrell, ECCV’14
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Input images with region proposals Object detection and part localizations Pose-normalized representation

ﬂclassiﬁer

Northern
Flicker

~ Nearest neighbors used in geametric constraints

Overview of our part localization: Starting from bottom-up region proposals (top-left), we
train both object and part detectors based on deep convolutional features. During test
time, all the windows are scored by all detectors (middle), and we apply non-parametric
geometric constraints (bottom) to rescore the windows and choose the best object and
part detections (top-right). The final step is to extract features on the localized semantic
parts for fine-grained recognition for a pose-normalized representation and then train a
classifier for the final categorization.

Part-based R-CNNs for Fine-Grained Category Detection,
Ning Zhang, Jeff Donahue, Ross Girshick, Trevor Darrell, ECCV’14
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In each row, the first column is the test image with an R-CNN bounding box detection, and
the rest are the top-five nearest neighbors in the training set, indexed using pool5
features and cosine distance metric.

Part-based R-CNNs for Fine-Grained Category Detection,
Ning Zhang, Jeff Donahue, Ross Girshick, Trevor Darrell, ECCV’14
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Fig. 1. Overview of our Coarse-to-Fine Auto-encoder Networks (CFAN) for real-time
face alignment. Hq, Ho are hidden layers. Through function Fg. the joint local features
@(S;) are extracted around facial landmarks of current shape S;.

Coarse-to-Fine Auto-Encoder Networks (CFAN) for Real-Time Face Alignment,
Jie Zhang, Shiguang Shan, Meina Kan, Xilin Chen, ECCV’14
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Fig. 2. Facial landmark detection under the par- Fig.3. Denition
tial occlusion scenario (from Helen datasets [18]): of 68 (top) and
Results of DCNN [26] (top row) and our CFAN 49 (bottom) fa-
(bottom row) cial landmarks

Proposed CFAN attempts to design the general cascade regression framework in a coarse-
to-fine architecture, with the regression in each stage modeled as a nonlinear deep
network. Specifically, the CFAN framework consists of several successive Stacked Auto-
encoder Networks (SANs). Each SAN attempts to characterize the nonlinear mappings
from face image to face shape in different scales based on the shape predicted from the

previous SAN.

Coarse-to-Fine Auto-Encoder Networks (CFAN) for Real-Time Face Alignment,
Jie Zhang, Shiguang Shan, Meina Kan, Xilin Chen, ECCV’14
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Local SAN1 Local SAN2 Local SANJ3 Local SAN 4

Fig. 4. Local patches extracted around the landmark points with different resolutions.
For the sake of concise display, we choose two eye centers and 17 facial points on the
face contour to describe the multi-resolution strategy used in each local SAN.

Coarse-to-Fine Auto-Encoder Networks (CFAN) for Real-Time Face Alignment,
Jie Zhang, Shiguang Shan, Meina Kan, Xilin Chen, ECCV’14
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Fig. 10. Example results from XM2VTS, LFPW and HELEN. The first five column
samples contain diverse variations in pose, expression, beard, sunglass and occlusion
respectively. Some failure cases are shown in the last column.

Coarse-to-Fine Auto-Encoder Networks (CFAN) for Real-Time Face Alignment,
Jie Zhang, Shiguang Shan, Meina Kan, Xilin Chen, ECCV’14
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* [louncK No cXoACTBY B KONNEKLUMAX N306parKeHN I

Similarity-Invariant Sketch-Based Image Retrieval in Large Databases,
Sarthak Parui and Anurag Mittal, ECCV'14
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* [lOWCK NO CXOACTBY B KONNEKLUUAX U306parKeHU

Similarity-Invariant Sketch-Based Image Retrieval in Large Databases,
Sarthak Parui and Anurag Mittal, ECCV’14
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* [lOMCK NO CXOACTBY B KONNEKUMAX N30OparkeHum

Learning Graphs to Model Visual Objects across Different Depictive Styles,
Qi Wu, Hongping Cai, and Peter Hall, ECCV’2014
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Saliency

Saliency is primarily driven in a bottom-up manner, depending on low level visual

cues in the visual scene. In one of the first biologically plausible computational models
for controlling visual attention, Koch and Ullman [31] followed Treisman and Gelade
[46] and introduced the idea of a saliency map. Visual input is first decomposed into
severalmaps encoding early visual features. Spatial competition in terms of hierarchical
center-surround differences then determines their convergence to a unique map
encoding saliency at each location. Most subsequent bottom-up saliency algorithms
followed this model and compute the saliency of pixel constituents based on their local
context (i.e., neighborhood) at multiple scales [27,22,10,25]. Alternatively, context was
also considered globally, e.g., as a smoothed version of the amplitude [23] or the
phase [20] spectrum of the image.

31. Koch, C., Ullman, S.: Shifts in selective visual attention: towards the underlying neural circuitry 4(4), 219-227 (1985)

46. Treisman, A.M., Gelade, G.: A feature-integration theory of attention. Cognitive Psychology 12(1), 97-136 (1980)

27. Itti, L., Koch, C., Niebur, E.: A model of saliency-based visual attention for rapid scene analysis. IEEE Transactions on Pattern Analysis
and Machine Intelligence 20(11), 1254-1259 (1998)

22. Harel, J., Koch, C., Perona, P.: Graph-based visual saliency. In: Neural Information Processing Systems, pp. 545-552 (2006)

10. Bruce, N., Tsotsos, J.: Saliency based on information maximization. In: Neural Information Processing Systems, pp. 155-162 (2005)
25. Itti, L., Baldi, P.: Bayesian surprise attracts human attention. In: Neural Information Processing Systems, pp. 547-554 (2005)

23. Hou, X., Zhang, L.: Saliency detection: A spectral residual approach. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 1-8 (2007)

20. Guo, C,, Zhang, L.: A novel multiresolution spatiotemporal saliency detection model and its

applications in image and video compression. IEEE Transactions on Image Processing 19(1), 185-198 (2010)

A Closer Look at Context: From Coxels to the Contextual Emergence of Object Saliency
Rotem Mairon and Ohad Ben-Shahar, ECCV’14



Saliency

Unlike the models mentioned above, that mainly act spatially in order to reproduce
human visual search strategies or predict visual fixations, other methods aim at
detecting saliency at the higher level of objects. While the (local) visual context used by
the first class of methods is reasonably intuitive, the forms of visual context employed
by the latter (object-level) approaches typically remain unexplained. We argue that this
somewhat obscure relationship often constrains the nature of visual objects they may
capture in order to measure their saliency.

Definition. The visual context of a constituent is the set of visual units in the image
that are used in the computational process that measures its saliency.

A Closer Look at Context: From Coxels to the Contextual Emergence of Object Saliency
Rotem Mairon and Ohad Ben-Shahar, ECCV’14
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Contrast-Based Saliency: In the first group are approaches that associate saliency
with high contrast between local or regional structures. To measure this contrast,
the computational mechanisms employ various center-surround structures. Some
approaches define the surround component independent of visual content, e.g., as the
local neighborhood of a pixel [24,48,1,32] or larger regular blocks [33]. In other
approaches, the surrounding context depends on a grouping process which typically
results in a superpixel representation of the image [29,11]. Apart from reducing
computational costs, superpixels are preferable due to their capacity to preserve
locally coherent structures (unlike pixels or predefined blocks). To a certain extent,
these structures facilitate meaningful central constituents when measuring contrast
and therefore are more suitable for saliency assignment.

24. Hu, Y., Xie, X., Ma, W.-Y,, Chia, L.-T., Rajan, D.: Salient region detection using weighted feature maps based on the human visual
attention model. In: Aizawa, K., Nakamura, Y., Satoh, S. (eds.) PCM 2004. LNCS, vol. 3332, pp. 993—-1000. Springer, Heidelberg (2004)
48. Wang, L., Xue, J., Zheng, N., Hua, G.: Automatic salient object extraction with contextual cue. In: Proceedings of the IEEE
International Conference on Computer Vision, pp. 105-112 (2011)

1. Achanta, R., Estrada, F.J.,Wils, P., S"usstrunk, S.: Salient region detection and segmentation. In: Gasteratos, A., Vincze, M., Tsotsos, J.K.
(eds.) ICVS 2008. LNCS, vol. 5008, pp. 66—75. Springer, Heidelberg (2008)

32. Liu, T., Yuan, Z., Sun, J., Wang, J., Zheng, N., Tang, X., Shum, H.: Learning to detect a salient object. IEEE Transactions on Pattern
Analysis and Machine Intelligence 33(2), 353—-367 (2011)

33. Ma, Y., Zhang, H.: Contrast-based image attention analysis by using fuzzy growing. In: Proceedings of the Eleventh ACM international
conference on Multimedia, pp. 374—381 (2003)

29. Jiang, H.,Wang, J., Yuan, Z,, Liu, T., Zheng, N., Li, S.: Automatic salient object segmentation based on context and shape prior. In:
British Machine Vision Conference (2011)

11. Chang, K., Liu, T., Chen, H., Lai, S.: Fusing generic objectness and visual saliency for salient object detection. In: Proceedings of the
IEEE International Conference on Computer Vision, pp. 914-921 (2011)

A Closer Look at Context: From Coxels to the Contextual Emergence of Object Saliency
Rotem Mairon and Ohad Ben-Shahar, ECCV’14



Saliency

Rarity-Based Saliency: The second group of approaches consider saliency as distinctness
or rarity. Intuitively, these may signal the importance of a visual constituent

compared with the redundancy of recurring visual information. Often in this approach

the context is a global representation of the entire visual input. For example, such a
representation may be the image mean color vector that is used as reference to measure
the saliency at all other pixels [2,4]. Alternative representation has considered a smoothed
version of the phase spectrum [28] in order to suppress non-salient components in the
original spectrum and thus highlight salient locations after transforming back to the spatial
domain. In a somewhat related way, image patches that are highly dissimilar to their k-
nearest neighbors were considered salient as this indicates their dissimilarity to all other
patches [19,11]. Recently, this measure of dissimilarity has been shown oblivious to patch
statistics, leading to a new measure based on the distance of each patch to the average
patch along the principal components of the patch distribution [35].

2. Achanta, R., Hemami, S., Estrada, F., Susstrunk, S.: Frequency-tuned salient region detection. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 1597-1604 (2009)

4. Achanta, R., Susstrunk, S.: Saliency detection for content-aware image rresizing. In: Proceedings of the IEEE International Conference
on Image Processing, pp. 1005-1008 (2009)

11. Chang, K., Liu, T., Chen, H., Lai, S.: Fusing generic objectness and visual saliency for salient object detection. In: Proceedings of the
IEEE International Conference on Computer Vision, pp. 914-921 (2011)

35. Margolin, R., Tal, A., Zelnik-Manor, L.:What makes a patch distinct? In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (2013)

A Closer Look at Context: From Coxels to the Contextual Emergence of Object Saliency
Rotem Mairon and Ohad Ben-Shahar, ECCV’14
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CSPR [29] PCAS [3 CSPR [29] PCAS [35]

Fig. 1. Salient objects in visual stimuli can have different flavors. As is typical in virtually all
benchmark databases, salient objects can be uniform singletons (panel a). However, salient ob-
jects can be multi-part and heterogeneous (panel b), they can have some multiplicity (panel ¢), or
they can even be completely abstract (like the "hole™ in panel d). By their implied notion of visual
context, most computational saliency models impose certain constraints on the types of objects
they can handle, with practical success limited to the simpler cases. Here we show computed
saliency map (thresholded at 80%) from two state-of-the-art algorithms (CSPR [29] and PCAS
[35]) and our own method. By modeling context instead of the objects we significantly reduce the
constraints on the nature of objects that may be detected as salient, as is illustrated by the better
assignment of saliency in all these cases.

A Closer Look at Context: From Coxels to the Contextual Emergence of Object Saliency
Rotem Mairon and Ohad Ben-Shahar, ECCV’14
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Rarity

(a)

Binarized saliency maps demonstrate the challenges in capturing whole salient objects by contrast (top) and rarity (bottom)
based approaches. The two leftmost columns in each category show example images and our maps. Contrast: Saliency
maps in columns c and d are generated as part of saliency computation algorithms. In column c computation is based on
rectangular structures of varying size and aspect ratio [32] whereas in column d neighboring superpixels were used to
estimate contrast [29]. The constraints are even more restrictive when only local considerations are involved [1] as shown in
column e. Rarity: The challenge remains when relying on rarity aspects of saliency, as demonstrated by the maps in columns
c-e [19,35,14]. When the object consists of multiple parts, only those with rare appearance are detected. The bottom map
in panel e demonstrates how a large object may render the appearance of its surrounding more rare and therefore more
computationally salient.

A Closer Look at Context: From Coxels to the Contextual Emergence of Object Saliency
Rotem Mairon and Ohad Ben-Shahar, ECCV’14



Saliency

What are the characteristics of visual context which allow to consider the
visual information it embeds (be it an object or not) as salient?

To answer this question, we suggest to model visual context based on the several
characteristics of visual information. Given a particular representation of the units that
compose it (pixels, superpixels, patches, etc...), we consider a single context element, or
coxel, to be a region or a subset of the image with the following properties (see Fig. 4):

Smoothness: Nearby units that compose the coxel are expected to have similar visual
appearance. The more distant the units, more leeway is allowed in their similarity.

Apathy to contiguity: A coxel may be either contiguous or not, 1.e., it may constitute
several distinct connected components in the image plane.

Enclosure: To qualify as a saliency coxel, the spatial layout of the context element
should “enclose™ (strictly or approximately) some visual information.

A Closer Look at Context: From Coxels to the Contextual Emergence of Object Saliency
Rotem Mairon and Ohad Ben-Shahar, ECCV’14



Saliency

Fig. 5. Schematic depiction of the two phases of Algorithm 1. (a) Initial coxels (SLIC superpixels
[3]) with their color-coded appearance content. (b) Coxels with small contextual gaps (initially,
those which are very proximate and similar) are merged to larger, uniquely labeled components.
Note that at this time no saliency bridges occur as any edge between two patches from the same
component traverses another patch from that component. (¢) At a future merging step, the thresh-
old on contextual gaps is large enough to allow distant coxels to merge (implied by similar labels).
(d) At this point, saliency bridges cross image patches from other coxels, leading to accumulation
of their saliency measure. To avoid clutter, only selected number of saliency bridges are shown.

A Closer Look at Context: From Coxels to the Contextual Emergence of Object Saliency
Rotem Mairon and Ohad Ben-Shahar, ECCV’14
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Input FUZE [11] CSPR [29] GCON [14]  CASD [19] PCAS [35]

A Closer Look at Context: From Coxels to the Contextual Emergence of Object Saliency
Rotem Mairon and Ohad Ben-Shahar, ECCV’14
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RGBD Salient Object Benchmark

(a) RGB image

Smoothed D

Fig. 1. Depth image calibration and filling

Fig. 2. A sample of image an-
notation. The image (b) is
consistently labeled by five
participants and included into
our benchmark. (¢) shows the ~ N b ,
final annotated salient object. (a) Input image  (b) Labelled image

(c) Ground truth

http://sites.google.com/site/rgbdsaliency

RGBD Salient Object Detection: A Benchmark and Algorithms,
Houwen Peng, Bing Li, Weihua Xiong, Weiming Hu, and Rongrong Ji, ECCV’14
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RGBD Salient Object Detection: A Benchmark and Algorithms,
Houwen Peng, Bing Li, Weihua Xiong, Weiming Hu, and Rongrong Ji, ECCV’14
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D CB.D LR.D PCA.D HS.D MR.D
RGBD Salient Object Detection: A Benchmark and Algorithms,
Houwen Peng, Bing Li, Weihua Xiong, Weiming Hu, and Rongrong Ji, ECCV’14)
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part — segmentation object — segmentation 3D — reconstruction

Fig.1l. Segmentation and 3D reconstruction results of two dynamic sequences
of the Youtube-Objects Dataset [23] and a football sequence downloaded from
YouTube. Left: segmentation into parts (rigid models). Centre: segmentation into
objects. Right: densified 3D video pop-up from a novel viewpoint.

Video Pop-up: Monocular 3D Reconstruction of Dynamic Scenes,
Chris Russell, Rui Yu, and Lourdes Agapito, ECCV’14
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CF(X) =FEdata + Eedge_break + Espa-rse + Emdi

=) Uilm)+> > dijA(j € N))

ieT mex; ieT jeN;
+ Z A(Fi: I; = m.n € X;) + MDL(x)
m#neM

Unary Costs (Egata) Ui(m) = Gi(m) + P;i(m)

Saliency Term. The work [28] provides a fully unsupervised method for object
detection in an image I, using a novel saliency map Sy. While [28] made use of
both the statistics taken from a large corpus of unlabelled images, and from the
image itself, we only make use of the statistics of the single image (this measure
is termed within image saliency in [28]). We compute saliency maps S ; for each
frame f in the video sequence and define the saliency cost P;(m) of point 7
belonging to model m as the distance from the mean saliency of model m

Pi(m) = Ag Z (S, (1) — Sm)’?

f<F

where S,, is the mean saliency of all tracks that currently belong to model
m, S, (i) is the saliency score of point i in frame f and Ag a weight on the
importance of this term. 28.Siva, P, Russell, C., Xiang, T., Agapito, L.: Looking beyond the image:
Unsupervised learning for object saliency and detection. CVPR’13
Video Pop-up: Monocular 3D Reconstruction of Dynamic Scenes,

Chris Russell, Rui Yu, and Lourdes Agapito, ECCV’14
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Fig. 4. Reconstruction results for a cat sequence of the Youtube-Objects Dataset [23]

Video Pop-up: Monocular 3D Reconstruction of Dynamic Scenes,
Chris Russell, Rui Yu, and Lourdes Agapito, ECCV’14



Video Segmentation, 3D, Energy-based, Saliency

- Ve |
ey v

Fig.5. Top: Reconstruction results for a motorbike sequence Youtube-Objects
Dataset [23]. Bottom: Sparse reconstruction of football footage, showing both the
assignment of tracks to parts and the quality of reconstruction before densification.

Video Pop-up: Monocular 3D Reconstruction of Dynamic Scenes,
Chris Russell, Rui Yu, and Lourdes Agapito, ECCV’14



Video Segmentation, 3D, Energy-based, Saliency

Fig. 6. Motion segmentation results on five sample sequences of the Berkeley Motion
Segmentation Dataset [6]. Second row: Part segmentation. Third row: Object seg-
mentation.

Video Pop-up: Monocular 3D Reconstruction of Dynamic Scenes,
Chris Russell, Rui Yu, and Lourdes Agapito, ECCV’14
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NYU Algorithm on NYU Dataset

" 5 most likely categories:
5 0.236223 shoe shop, shoe-shop, shoe store
X ’ 0.027985 confectionery, confectionary

‘ ‘j 0.025233 cinema, movie theater

0.024637 butcher shop, meat market
0.024317 slot, one-armed bandit

NYU1418.jpg

r Jia Deng’s advisor’s advisor’s advisor’s advisor (—l

Nevatia & Binford, 1977. IMAGENET

“These techniques are inadequate for three-
dimensional scene analysis for many reasons:”

1335
Ah

1. Variation 2_ \fewpomt 3. lllumination 4. Clutter 5. Occlusion

Sliding Shapes for 3D Object Detection in Depth Images,
Shuran Song, Jianxiong Xiao, ECCV’14
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Solution: 3D Depth

e Color Rendering # Real Photo
e Depth Rendering = Depth from Kinect

synthetic real

h’/”"’ lfk(\"’h} sliding Shapes

Kinect Body Pose Recognition [Shotton et al.]

Input: Kinect Depth Map Output: 3D Bounding Box

Code & Data Available
http://slidingshapes.cs.princeton.edu

Sliding Shapes for 3D Object Detection in Depth Images,
Shuran Song, Jianxiong Xiao, ECCV’14
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Recipe of Detector Features

feature SVM weights
- - :
’— f, > W

Ve
f, > W,
Vet >

( f:_-‘ccll,s J w-fccll.s

o

2D Object Detector 3D Object Detector:

Sliding Shapes for 3D Object Detection in Depth Images,
Shuran Song, Jianxiong Xiao, ECCV’14
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Rendered Depth 3D Point Cloud Feature

RGB Di image

€G Model -~
ot S\N‘
e’s‘
\‘\'(\

RGB-D image 3D Point Cloud 3D Point Cloud

(a) Training each 3D exemplar detector independently. (b) Testing with exemplars.

RGB-D image

Fig. 1. Sliding Shapes: We extract 3D features of point cloud from depth rendering of CG model
to train a 3D classifier. And during testing time, we slide a window in 3D to evaluate the score
for each window using an ensemble of Exemplar-SVMs.

O 2 (W R
e e e e e (W e e e M R R R AR R R
el bl Pl e e ol A
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e [l ] el e
IH!'I!IHW“IH'Iﬂ!ﬂl“l'lﬂﬂﬂlll!'uﬂ
U A A
'IJAEHHHH'MH&WEHH!LH!bl-ﬂlili!ﬂaI-EI-!I!-
e LR R P R R PR R R
o 0 T 3
uﬂlﬂﬂuﬂﬂul‘bbEEEEWI‘IEI-EWEHE‘LLElllﬂ

Fig. 2. Training procedure: We use a collection of CG models to train a 3D detector. For each
CG model, we render it from hundreds of view angles to generate a pool of positive training
data. For each rendering, we train an Exemplar-SVM model. And we ensemble all SVMs from
renderings of CG chair models to build a 3D chair detector.

Sliding Shapes for 3D Object Detection in Depth Images,
Shuran Song, Jianxiong Xiao, ECCV’14
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3D Features ]

Truncated Signed Distance Function (TSDF)

1 —
i
(ol
b

\L\
Points Normal Shape TSDF  Combined

inside window outside window

]

Camera

Occlusion Clutter

| A~ []Out of sight

|| Free space

P || Surface with points
: [_]Inter-object occlusion §
|| Self-occlusion
® Occluder

[ sliding window

(a) Occlusion reasoning using the occluder’s location. (b) Occupation mask to slide a shape.

Fig. 4. Beyond sliding windows. Depth and 3D mesh are used to handle occlusion and clutter.

Sliding Shapes for 3D Object Detection in Depth Images,
Shuran Song, Jianxiong Xiao, ECCV’14
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-0.22(1) -0.59(5)

-0.65(6)

Fig. 6. True positives. Besides labels, our detector also predicts object orientation and 3D model.

DPM

Sliding Shapes

Sliding Shapes for 3D Object
Detection in Depth Images,
Shuran Song, Jianxiong Xiao, ECCV’'14
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I'Ipwv\ep cermeHTaunn cueH

Sliding Shapes for 3D Object Detection in Depth Images,
Shuran Song, Jianxiong Xiao, ECCV’14



CermeHTauua, MRF, Energy-based, Graph-Cut

b) User Scribbles (c) Length Regylarization_' (d) Convexity Shape Prior

D~ N ‘-..\
’*’l W
11. b 4! K x R

Fig. 1. Segmentation with convexity shape prior: (a) input image, (b) user scribbles,
(c) segmentation with contrast sensitive length regularization. We optimized the weight
of length with respect to ground truth. (d) segmentation with convexity shape prior.

d =(,,v,) PR Eonvexity (X) = Z Z (i, g, Tr).
sl i
L 3, f *:; ;j E(x) = Econvexity(X) + Esub(X)
?7? Ay

. oo 1 (zp.xq,2) =(1.0,1
@(i“p,l‘q,ﬂ?r) _ ( D -q. ) ( }
0 otherwise.

Convexity Shape Prior for Segmentation,
Lena Gorelick, Olga Veksler, Yuri Boykov, and Claudia Nieuwenhuis, ECCV’14
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5Robustness: Convexity vs. Length
' 4;( 10

. === |cngth regularizer

= ® convexity reqularizer |
w=095  |lw=096

&

e ¥ g n
i A
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10

distance from Ground Truth

Regularizer weight o

Convexity Shape Prior for Segmentation,
Lena Gorelick, Olga Veksler, Yuri Boykov, and Claudia Nieuwenhuis, ECCV’14
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Input User Scribbles Length Regularization Convexity Regularization

Convexity Shape Prior for Segmentation,
Lena Gorelick, Olga Veksler, Yuri Boykov, and Claudia Nieuwenhuis, ECCV’14
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Bound Optimization Algorithm 1. ParameTRIC PsSEupo-Bounp Cuts (PPBC)

(a)

1 S[] — Sinit
E(S) 2 Fo? t=0,1.2, .., rfepeat unt?l convergence .
3 Construct an auxiliary function A:(S) at current solution S;
E{(S]) - . . .
@ 4 Combine A;(S) with unary relaxation term R;(S5) to form pseudo-bound

Fe(S,A) = Ai(S) + A Ri(5)

5 //Optimize the parametric family of pseudo-bounds
S* = argming F;(S, \), for A € 4
. ——— ) 6 //Score candidate solutions and update
L, x ) ~ / N x solution space . . —,)\ 3 A
S =5 5. s A" = argmin, F(S7), Sir14— S

Pseudo-bound Optimization
(IS1-1V,] P
-(Puni/ 1S, 1)Y2

NN R

Vol IS S|

(a) Volumetric prior, Sec.3.1.1 (b) Bhattacharyya prior, Sec.3.1.3

Fig. 3. Pseudo-bound families for two cardinality functions. Auxiliary functions are
red.

Pseudo-bound Optimization for Binary Energies,
Meng Tang, Ismail Ben Ayed, and Yuri Boykov, ECCV’14
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Non-submodular Pairwise Energies

(m

_nq+ ‘;) ' (Sp—l—sq ]/‘?

Fig.4. pPBC-T: Pseudo-bounds (purple) and auxiliary functions (red) of non-
submodular potential mpqspsq for current configuration sy = 0,54+ = 0 (left) and
Sp,t = 0,54+ = 1 (right).

Table 1. Auxiliary functions [11] and weighted bound relaxation term for pPBC-T

(8p.t, Sq,¢)|Auxiliary function|relaxation term (pPBC-T)
(0,0) Mpq(sp + Sq)/2 A(sp — Sp,t + 5q — Sq,t)
(0,1) MpgSp Asp — Sp.t)

(1,0) MpqSq A(sq — Sq.t)
(1,1) Mpq(Sp + Sq)/2 A(sp — Sp,t + 5q — Sq,t)

Pseudo-bound Optimization for Binary Energies,
Meng Tang, Ismail Ben Ayed, and Yuri Boykov, ECCV’14
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Auxiliary Cuts Fast Trust Region
~ E=7265 E=6497

Fig. 2. Matching target foreground color distribution using auxiliary cuts [3], fast trust
region [12] and pPBC. pPBC achieves the lowest energy.

BCD a bPBC g
oo ol | )

E=1.4198x10° E=1.4026x10°

i

E=1.4026x10°  E=1.4026x10°

Initializations

«"’
N\ - e
e
. e
2

Fig. 5. Left: interactive segmentations with BCD (GrabCut) or pPBC from different
initialization (ellipses). Proposed pPBC method is more robust to inferior initialization.
Right: unsupervised figure-ground segmentation with pPBC. Average color is shown.

Pseudo-bound Optimization for Binary Energies,
Meng Tang, Ismail Ben Ayed, and Yuri Boykov, ECCV’14



MRF, Segmentation, 3D Flow

E(s.0,f,0,Z,d) =Y Eeol(P.Csy) +Apos ¥ Epos(P. fis,) + Adepth ¥ Baeptn (P, 0y, f)

P P P
colortdata Iocc:,;z'on depthtdata
+ /\smo Z ESmO(Qiﬁejjoi:j) +)\com Z Epucn (Ot j)
{i:j}ENseg {3 J}ENseg
plane—sgoothness Eabelrpmor
+ Ab Ebou(sp, s : . .
o Z ou(sp, 5q) Stereo pair Video pair
{pP.q}ENs * *
boundary—length
SGM-Stereo SGM-Flow
| |
Y

Estimation of mapping
between stereo and flow
v
SGM-StereoFlow

v

- , , _ Slanted-plane smoothing
Efficient Joint Segmentation, Occlusion

Labeling, Stereo and Flow Estimation
Koichiro Yamaguchi, David McAllester, and Raquel Urtasun, ECCV’'14



3D Flow

Left
image at
time t

Superpixeli#s
segments

Boundary
labels

Disparity
image

Disparity
error

Flow

image

Flow

error

Efficient Joint Segmentation, Occlusion
Labeling, Stereo and Flow Estimation
Koichiro Yamaguchi, David McAllester, and Raquel Urtasun, ECCV’14



Face, 3D Reconstruction, 3D Flow
Input Method Overwew

Video

(A8 .

Pose
Estimation

?’

Internet photos (same person) 1

3D Flow

!

High Detail
Refinement

Total Moving Face Reconstruction
Supasorn Suwajanakorn, Ira Kemelmacher-Shlizerman, and Steven M. Seitz, ECCV’'14



Face, 3D Reconstruction, 3D Flow

High-detail
Refinement

Average Shape 3D flow

3D flow convergence example

Until Converge

Pose refinement algorithm I |
Landmarks Relight + Appl New | Estimate New Pose
elight + Apply
- - — - _
BpuLlinage Detection Pose to AVG Cousshandense ViaBabisAC pnb

via Optical Flow

Total Moving Face Reconstruction
Supasorn Suwajanakorn, Ira Kemelmacher-Shlizerman, and Steven M. Seitz, ECCV’'14



Face, 3D Reconstruction, 3D FIow

Average
Shapes

Total Moving Face Reconstruction
Supasorn Suwajanakorn, Ira Kemelmacher-Shlizerman, and Steven M. Seitz, ECCV’'14



Face, 3D Reconstruction, 3D Flow

Total Moving Face Reconstruction
Supasorn Suwajanakorn, Ira Kemelmacher-Shlizerman, and Steven M. Seitz, ECCV’'14



3D Reconstruction, 4D Segmentation, 3D Flow

left right
A= e et A t=1

}>1—|—E ) |
AV Nl =0 ot 50 ot 1{}1;:1“
Ve st =1 ./(a) \ S (b) \

y
p. \ b
-/ (c) \

Fig. 2. (left) Data terms in the three-frame case: Consistency is enforced for spatial
and direct temporal neighbors (black arrows). (right) lllustration of the per pixel data
term: (a) impossible case, (b) occlusion (c¢) normal case (see text for more details.)

E(P.S) = Ep(P.S) + AEg(P.S) + nEs(S).
View-Consistent Data Term

Shape and Motion Regularization

Spatial Segmentation Regularization

View-Consistent 3D Scene Flow Estimation over Multiple Frames,
Christoph Vogel, Stefan Roth, and Konrad Schindler, ECCV’14
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(left) Input frames. (right) Reconstructed scene flow, reprojected to disparity and 2D flow field.

View-Consistent 3D Scene Flow Estimation over Multiple Frames,
Christoph Vogel, Stefan Roth, and Konrad Schindler, ECCV’'14



3D Reconstruction, 4D Segmentation, 3D Flow
disparity

optlcal flow

.............

near

t=-1 t=0 t=1

sun flares shadow truck

crossing

(left) Input frames. (right) Reconstructed scene flow, reprojected to disparity and 2D flow field.

View-Consistent 3D Scene Flow Estimation over Multiple Frames,
Christoph Vogel, Stefan Roth, and Konrad Schindler, ECCV’'14
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. Rankiné Orientation Responses of Path Operator

Tubular Structure Filtering by | e 2
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Our main algorithm has only 1 line of code

while(iter--) res = bilateralFilter(im,res,scale,SIGMA R);

Rolling Guidance Filter,
Qi Zhang, Xiaoyong Shen, Li Xu, Jiaya Jia
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AT [ | o=

Fig. 1. Examples of high-contrast details in natural images. As explained, edge-aware
filters aim to maintain them due to the large magnitude of edges.

textures white dots the ecye
Input disappear disappear disappears
\

l

¥

s=8 ) s=14

Fig. 2. Illustration of scales. As the Gaussian kernel gets larger, more and more struc-
tures disappear.

Rolling Guidance Filter,
Qi Zhang, Xiaoyong Shen, Li Xu, Jiaya Jia
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Small Structures
(textured region)
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Mopdonornyeckasa dunbtTpaumnsa n3obparkKeHmnm

Large Structures

Going-up

/\/

ost Going-down

o =3 e

edges are removed

e -

(b)

edges still exist

(c)

Fig. 3. Comparison of small- and large-structure results after Gaussian filtering. (a)
Input image. (b)-(c) 1D signals of pixel values in two lines. The upper signals are the

immput and the lower ones are results of Gaussian filtering.

Rolling Guidance Filter,
Qi Zhang, Xiaoyong Shen, Li Xu, Jiaya Jia
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Input Image Algorithm 1. Rolling Guidance Using Bilateral Filter

Input: I, os, o, Niter
Output: ™V
1: Initialize J° as a constant image

2: for t:= 1 to N'** do
3:  J' « JointBilateral(I,J'" ™', 04, 0,) {Input: I; Guidance: J*=! }
4. end for N
S
Step 1
Small Structure
Removal

Guidance {7 Guidance ¥/
Step 2 Step 2
Edge Recovery Edge Recovery
' i

Fig. 4. Flow chart of our method. It contains two steps respectively for small structure
removal (Section 4.1) and edge recovery (Section 4.2). Step 2 is an iterative process.
The final result is obtained in 3-5 iterations.

Rolling Guidance Filter,
Qi Zhang, Xiaoyong Shen, Li Xu, Jiaya Jia
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Edge Recovery

The iterative edge recovery step forms the major contribution in our method.
In this process, an image .J is iteratively updated. We denote .J¢™1 as the result
in the t-th iteration. Initially, J! is set as G' in Eq. (2), which is the output of
Gaussian filtering. The value of J'™! in the ¢-th iteration is obtained in a joint
bilateral filtering form given the input I and the value in previous iteration .J*:

1 p—q|? Jt(p) — JHq)||?
Jt—i—l(p) — ? Z exp ( . H 5 || L H ( )202 ( )” )I(Q)
P qeN (p) ° "

where

I 2 jt _Ji: 2
K= Y exp(_llp gl 17°(p) = T (4)| )

202 202
qeN(p)

for normalization. I is the same input image used in Eq. (2). s and o, control
the spatial and range weights respectively.

He, K., Sun, J., Tang, X.: Guided image filtering. ECCV 2010

Rolling Guidance Filter,
Qi Zhang, Xiaoyong Shen, Li Xu, Jiaya Jia
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Per-pixel Intensity Difference Between Two Iterations

0.02 I I T T I I I I |
0.01 —
0 : —— . | | |
8 10 12 14 16 18

Number of Iterations

! close-up close-up & close-up

Fig. 7. Plot of difference between input and output images in iterations. The difference
of two successive iterations reduces monotonically and the result is guaranteed not an
all-constant image. We use 05 = 4 and o, = 0.1 for this example. Please view them in
the original resolutions to compare all details.

Rolling Guidance Filter,
Qi Zhang, Xiaoyong Shen, Li Xu, Jiaya Jia
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SR (a)Input&Close ups—l (b) Subr etal. ()Cov.2 (d) RTV (Zhangetal (f)Ours
478s 1352s 58s 15s 2s

Fig. 12. Texture smoothing results and close-ups. (b)-(e) are results of [25], [14], [30],
and [34] respectively. Parameters are (b) £k = 5, (¢) 0 = 0.3, £k = 9, (d) A = 0.015,
o= 5, (&) © ==3,0, = 0.3, 10 iterations, (f) g. =15, b, = 0.1

Rolling Guidance Filter,
Qi Zhang, Xiaoyong Shen, Li Xu, Jiaya Jia
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(a)
Fig. 13. Virtual contour restoration. Large contrast naturally forms region boundaries
in human perception. Our filter can simulate this process.

Rolling Guidance Filter,
Qi Zhang, Xiaoyong Shen, Li Xu, Jiaya Jia
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Shape Analysis

Related work

Anisotropic Denoising / Regularization
— Curvature-aware

Related work

Isotropic spectral 3D shape analysis
L— Intrinsic information

[Rustamov, SGP 07] [Sun et al, SGP 09] [Aubry et al, ICCV WS 11 S - r
[Litman et al,, C&G 11]  [Rodola et al y Anisotropic Denoising —.  Heeds local details
S odola et al., SGP 14] [Desbrun el al, SIGGRAPH 99) [Clarenz et al, VIS 00] [Tadiszen &t al, VIS 02)

Related work

High dimensional data analysis
by spectral clustering

Goal

[Kim et al. ICCV 13]

Anisotropy i ha _
v Extrinsic information 4 Intrinsic information
Reweighted graph Laplacian \ /
* Anisotropic Laplace-Beltrami operator

Transfer to shape analysis?
Keep Laplacian’s nice mathematical
properties !

non-linearity

Limitations:
ad hoc formulation

Anisotropic Laplace-Beltrami Operator for Shape Analysis, Mathieu Andreux,
Emanuele Rodola, Mathieu Aubry, Daniel Cremers, ECCV’14, W26



Shape Analysis

Anisotropic Laplace-Beltrami
Operators

Desired result: heat diffusion example

[adadan

lsotropic Anisotropic Anisotropic
High bending++ Low bending++

Anisotropic Laplace-Beltrami
Operators

/\\ Ap = div(DVf)

Anisotropic tensor

Um 4
L ,/ D controls the direction/intensity

Principal curvatures: of diffusion/wave propagation/. ..
directions

In practice: U Unp

1;.‘ 0] Um
D. — [ Trelsar ;
& 0 —l—r Unr
I+altnm|

Deviation from isotropy

Linear
© Self-adjoint Continuous
Negative semi-definite (~ formulation
Eigendecomposition

Anisotropic Laplace-Beltrami Operators Properties
ours Kim et al~.’s
Ap =div(DV) Ap = div(D(V])) Loss of isometry-invariance
o A ”SZ;“/—‘ /\
8 @ = =l
s Bl
D(l = (m(_’)th 1 ) (
\\ /
=i 4

Non-linear

_ We can actually
differentiate these shapes!

Anisotropic Laplace-Beltrami Operator for Shape Analysis, Mathieu Andreux,
Emanuele Rodola, Mathieu Aubry, Daniel Cremers, ECCV’14, W26



Shape Analysis

Matching

Experiments

Procedure

Datasets Goal

Sample (null)

Matching points under
near isometries !

Descriptor on # poses

L

Order null points wrt
descriptor similarity

v

The sooner the
groundtruth, the better!

TOSCA
(Michael)

[Bronstein et al. 08]

SHREC 10: 3 shapes, 9 deformations (incl. noise)

3
|sotropic case

Improved results

Hit ratio (%)

f Y: Percentage of points with
groundtruth in X% closest
neighbors

X v Anisotropy
— i I
0.1 0.2 03 04 0.5 0.6 0.7 0.8 09 1

% of best matches

Consensus segmentation

Anisotropic Laplace-Beltrami Operator for Shape Analysis, Mathieu Andreux,
Emanuele Rodola, Mathieu Aubry, Daniel Cremers, ECCV’14, W26



Shape Analysis

General idea

« Idea: encode the problem of 3D shape matching in
biological terms and solve it as a sequence alignment

problem
&

The 3D shape is transformed into a
biological sequence

Overall aim

«can we exploit well-established bioinformatics tools
to solve computer vision and pattern recognition
problems?»

- We explore bioinformatics solutions to face 3D shape
matching.

Two main sub-problems:
1. How tofind an ordering from a 3D mesh
2. How to observe discrete simbols from a shape

e 2D shape matching
et B
Similar approaches ST e W

Bronstein, A.M., Bronstein, M.M., Kimmel, Bicego, M., Lovato, P.: 2d shape recogniti
R.: The video genome. CoRR abs/1003.5320 using biological sequence alignment too!
(2010) In: ICPR. pp. 1359-1362

A bioinformatics approach to 3D shape matching,
Manuele Bicego, Stefano Danese, Simone Melzi, Umberto Castellani, ECCV'14, W26



Shape Analysis

Local feature extraction

- Shape Index: represents the degree of concavity of a surface
patch:

I i 2 ki +ko . ]
Proposed pipeline =L () o,
k, and k, are the principal curvatures.

- r h o .
o(rnlgvlenratlicﬁs) . Acco‘r(.irng to the Shape index value the surface can be
classified as:

-0 -05 0.0 0.5 1.0

concave rut minimal  ridge convex
umbilic  spinode  saddle spinode umbilic

Feature quantization

Extraction of
shape index

Quantization

For every vertex the quantized
level is converted to an
8 aminoacid (lookup table) + We define two very simple schemes:
— ‘DNA-mapping’: shape index values are

mapped to the 3 intervals by leading to 3 »

TYNYMRQL. .... NHYSVFAT
symbols.
. spectral based Biological sequence
Computation of ordering of vertices (N aminoacids)

Fiedler Vector
— ‘Protein mapping’: shape index values

are mapped as the aminoacid alphabet
composed by 20 symbols.

A bioinformatics approach to 3D shape matching,
Manuele Bicego, Stefano Danese, Simone Melzi, Umberto Castellani, ECCV'14, W26



Shape Analysis

Spectral based ordering Sequence alignment

. Needleman-Wunsh (NW) algorithm: is a dynamic

+ As proposed for streaming mesh, or mesh partitioning we A il
used the ordering provided by the second eigenvector of programming method for finding the best globa
Laplace operator, i.e., the so called Fiedler Vector alignment between two sequences

: . Sequence 1 TACTAGGCATGAC

* Fiedler vector provides an heuristic solution to the minimum  Sequence 2 ACAGGTCAGTC
linear arrangement (MLA) problem.

Aligned Sequence 1 TACT -CAT

Aligned Sequence 2 -AC- TEAS C

¢ 1 N T 5 A2
Vo = ?11:22111 Zi.j -1 Wiy (Ui — u;) T Match Mismatch
S.t. ‘e = N —
nie=Suin=—rl Gap
Spectral based ordering
. We evaluate both Smith-Waterman (SW) and
Fiedler Vector Needleman-Wunch (NW) algorithms
« We compare our approach with:

— Shape DNA,
— Dynamic Time Warping (DTW) distance between
Shape index sequeces ordered by Fiedler Vector,
— Histogram of Shape Index.
* We perform shape classification using a Nearest
Neighbour approach.

A bioinformatics approach to 3D shape matching,
Manuele Bicego, Stefano Danese, Simone Melzi, Umberto Castellani, ECCV'14, W26



Shape Analysis

Results
Results

v"\lvtllu’(fl_— ' .-\.-\ .\'T
INW (Basic) '0.0000 0.0350
'SW (Basic) 0.0629 0.1189

'NW (Advanced)|0.0000 0.1888
'SW (Advanced) | 0.0629 0.2308

Performance evaluation
rm“‘h"‘l Error LOO Point to point matching
s TN S - =
!'\_h'lp( DINA X : U'”Q.‘ ? Tosca Dataset: is composed by 10 classes of
|.\_I'u“|pc.- Index Hist (100 bin)| — 0.0§39 non-rigid objects: cat, centaur, manl, dog,
DTW 0.0420 gorilla, man2, horse, lioness, seahorse, and
Proposed approach (best) | 0.0000 woman

Comparison with other methods

A bioinformatics approach to 3D shape matching,
Manuele Bicego, Stefano Danese, Simone Melzi, Umberto Castellani, ECCV'14, W26



Shape Analysis

Results

Results

Isometry Isometry-toplogy
transformation transformation
_U('I]kn(i | AA NT - ‘.\I(’ITIU(] _\_\— -\;ﬁ
NW (Basic) [ 0.0408 0.1221] NW (Basic)  |0.0000 0.1837, f
'SW (Basic) | 0.0612 0.1429) SW (Basic) 10.0000 0.2245 A\ %
'NW (Advanced)| 0.0000 0.1020 NW (Advanced)|0.0000 0.1224

SW (Advanced) | 0.0000 0.1020/ ISW (Advanced) |0.0000 0.1224
S = : Shape Google Dataset: is composed by 10 classes of non-rigid objects: dog, catl,

REpomnanceevalaation Performance evaluation cat2, woman, man, dromedary, elephant, flamingo, horse, gouger. Each object
appears with multiple modifications and transformations of the original shape.

plsdiod Error LOO] Method [Error LOO!
Shape DNA 0.1020 | /Shape DNA | 03469 |
Shape Index Hist (20 l»in)‘ 0.1837 | Shape Index Hist (20 bin)| 0.2041 |
DTW | 0.0408 |[DTW 0.1224
Proposed approach (best)| 0.0000 ‘ &)pnsed approach (best)| 0.0000

Comparison with other methods Comparison with other methods

A bioinformatics approach to 3D shape matching,
Manuele Bicego, Stefano Danese, Simone Melzi, Umberto Castellani, ECCV'14, W26



Shape Analysis, Energy-based, SPD

Goal: Segmentation, Recognition Scene Understanding

Segmentimages into regions corresponding
to projections of different objects in a real 3d
scene and recognize the objects

' : : Ideally, we would want a framework that "uniformly’
CPMC: Constrained Parametric Min-CutsS  accommodates color, depth and video analysis

for Automatic Object Segmentation Problems

| E)=3 DA 3V (x,,x) > min,, Ey(x) - Region generation
ueb (unlE ; o2
Object PlausioRly — Systematic, combinatorial
Parametric higher — Boundaries from RGB, depth, motion
it _ * Region selection, pool compression
L : -': — Object-like=class-independent=objectness
= - > - anKing: o — Maximum marginal diversification
o 2
S e '“"’r";;]“‘g +« Region description
pogree aLitiogrouns Bies fower — Second-order methods
. 3 - « Complete scene recognition by composition
Solve for all breakpoints (x, 1) using parametric max flow — R, (e e e
Carreira and Sminchisescu, ICCV09, CVPR 10, PAMI 11 — Sequential vs. simultaneous

A Grassmannian Framework for Face Recognition of 3D Dynamic Sequences with
Challenging Conditions, Taleb Alashkar, Boulbaba Ben Amor, Mohamed Daoudi,
Stefano Berretti, ECCV'14, W26



Shape Analysis, Energy-based, SPD

Representing Regions
(typical pipeline)

Repeat for
each region

Q Local Feature ’
Extraction Coding

Pooling

Dense local
feature extraction Codebook
All local N ) Local feature Region
featwes . .. & encodings descriptor
- L 2
Y ummarnze
" S = coded features =
inside region

A Grassmannian Framework for Face Recognition of 3D Dynamic Sequences with
Challenging Conditions, Taleb Alashkar, Boulbaba Ben Amor, Mohamed Daoudi,
Stefano Berretti, ECCV'14, W26



Shape Analysis, Energy-based, SPD
Second Order Pooling (O2P)
Can we pursue higher-order statistics for pooling ?

bypass coding
Local Feature

Extraction Pooling

Capture correlations Use correct metric
h‘

N
1 1 T
Gavg = —,zxz Gavg = —sz ' X Giog=108(Gayy)
NL =) N =D

L

Using Log-Euclidean metric we can directly .
embed entire manifold of SPD matrices W 4
Dimensionality = (local descriptor size)?

Carreira, Caseiro, Batista, 7§_nynch_lsescu, ECCV12

A Grassmannian Framework for Face Recognition of 3D Dynamic Sequences with
Challenging Conditions, Taleb Alashkar, Boulbaba Ben Amor, Mohamed Daoudi,
Stefano Berretti, ECCV’'14, W26



Shape Analysis, Energy-based, SPD

bottlé
bird
| COW

A Grassmannian Framework for Face Recognition of 3D Dynamic Sequences with
Challenging Conditions, Taleb Alashkar, Boulbaba Ben Amor, Mohamed Daoudi,
Stefano Berretti, ECCV'14, W26




Canonical Correlation Analysis on Riemannian Manifolds and Its Applications,
Hyunwoo J. Kim, Nagesh Adluru, Barbara B. Bendlin, Sterling C. Johnson,
Baba C. Vemuri, and Vikas Singh, ECCV’14




SPD, Manifolds

Fig.1l. CCA on Riemannian manifolds. CCA searches geodesic submanifolds (sub-
spaces), Sw, and S, at the Karcher mean of data on each manifold. Correlation
between projected points {IIs,, (z:)}i; and {11s,,, (y,)}L, is equivalent to the cor-
relation between projection coefficients {ti};il and {u; N .. Although « and y belong
to the same manifold we show them in different plots for ease of explanation.

N _
P —  max Z@:l(ti - a(“‘i — u)
Ty —

W :wyvtnu \/Zi\rzl(tﬁ . -E)Q \/Zil(au_i —_ H)?

sit. t; = arg I]‘fili]il ) |Log(Exp(p,, tiws), x:)||*, Vi € {1,... N}
t;e(—e,e

(10)

u; = arg 11{1i11 | |Log(Exp(p,,, u.g-wy)}yz_)“?l‘di c{l,...,N}
u;cl—e,e

Canonical Correlation Analysis on Riemannian Manifolds and Its Applications,

Hyunwoo J. Kim, Nagesh Adluru, Barbara B. Bendlin, Sterling C. Johnson,

Baba C. Vemuri, and Vikas Singh, ECCV’14



SPD, Manifolds
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Fig. 2. Synthetic experiments showing the benefits of Riemannian CCA. The top row
shows the projected data using the Euclidean CCA and the bottom using Rieman-
nian CCA. Px and Py denote the projected axes. Each column represents a synthetic
experiment with a specific set of {jtx;. €z, jty,, €y, }. The first column presents results
with 100 samples while the three columns on the right show with 1000 samples. The
improvements in the correlation coefficients pg 4 can be clearly seen from the corre-
sponding titles.

Canonical Correlation Analysis on Riemannian Manifolds and Its Applications,
Hyunwoo J. Kim, Nagesh Adluru, Barbara B. Bendlin, Sterling C. Johnson,
Baba C. Vemuri, and Vikas Singh, ECCV’14



SPD, Manifolds

Euclidean (tensor), Stats.: F=13.1,df=1 339,p=0.0003
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Experimental evidence showing the improvements in statistical significance
of finding the multi-modal risk-brain interaction effects.

Canonical Correlation Analysis on Riemannian Manifolds and Its Applications,
Hyunwoo J. Kim, Nagesh Adluru, Barbara B. Bendlin, Sterling C. Johnson,

Baba C. Vemuri, and Vikas Singh, ECCV’14



SPD, Manifolds

Fig. 1. A schematic illustration of our sparse coding objective formulation. For the
SPD manifold M and given SPD basis matrices B; on the manifold, our objective
seeks a non-negative sparse linear combination Zi a; B; of the B;’s that is closest (in
a geodesic sense) to the given input SPD matrix X.

Riemannian Sparse Coding for Positive Definite Matrices,
Anoop Cherian and Suvrit Sra, ECCV’14



SPD, Manifolds

Model. Let B be a dictionary with n atoms By. By, --- ., B,,. where each B; € Sj‘f.
Let X € Sj"ﬁ be an input matrix that must be sparse coded. Our basic sparse
coding objective is to solve
. ,_ 1 5 n . ,
glélf} ola) = §d??, (Zizl (liBi,)i) + Sp(«)

1 n 1 1|2 .
:§HLUgZizlaix *BiX 72|+ Spla),

where «; 1s the i-th component of «, and Sp 1s a sparsity inducing function.

Riemannian Sparse Coding for Positive Definite Matrices,
Anoop Cherian and Suvrit Sra, ECCV’14



SPD, Manifolds

mj%‘_‘-’h'%:lﬂ e A

-

- -; ‘\’l‘ = " ; !
1 W N \
‘4 '] ’)l - /, yINR 4

'ﬁtilgctaw

ArtelSver el 4 TS

Fig. 3. Montage of sample images from the four datasets used in our experiments. Top-
left are samples from the ETHS0 object dataset, bottom-left are the Brodatz textures,
top-right are the samples from ETHZ people dataset, and images from the RGB-D
object recognition dataset are shown on bottom right.

Riemannian Sparse Coding for Positive Definite Matrices,
Anoop Cherian and Suvrit Sra, ECCV’14



SPD, Manlfolds

e - a A o . . o
Table 2. ETHS0 object recognition

Method Accuracy (%) Method Accuracy (%)
LE-SC 174 (111 LESC 68.0 (3.3)
Frob-SC 32.3 (4.4) Frob-SC 67.3 (1.4)
K-Stein-SC 392 (0.79) K-Stein-SC  81.6 (2.1)
K-LE-SC 47.9 (0.46) K-LE-SC 76.6 (0.4)
TSC 35.6 (7.1) TSC 37.1 (3.9)
GDL 43.7 (6.3) GDL 65.8 (3.1)
Riem-SC(ours) 53.9 (3.4) Riem-SC(ours) 77.9 (1.9)

WiTable 3. ETHZ Person Re-identification Table 4. RGB-D Object Recognition|

Method — Accuracy (%) Method  Accuracy (%) l‘.‘ '

LE-SC 78.5 (2.5) LE-SC 86.1 (1.0)
Frob-SC 83.7 (0.2) Frob-SC 80.3 (1.1)
K-Stein-SC 88.3 (0.4) K-Stein-SC 75.6 (1.1)
K-LE-SC 87.8 (0.8) K-LE-SC 83.5 (0.2)
TsC 67.7 (1.2) TSC 72.8 (2.1)
GDL 30.5 (1.7) GDL 61.9 (0.4)
Riem-SC(ours) 90.1 (0.9) Riem-SC(ours) 84.0 (0.6)

Riemannian Sparse Coding for Positive Definite Matrices,
Anoop Cherian and Suvrit Sra, ECCV’14



SPD, Manifolds

Dimensionality reduction methods on the manifolds

Principal Geodesic Analysis Covariance Discriminative Learning

(Fletcher et al. TMI'04): (Wang et al. CVPR'12):
@ Generalization of PCA to e Designed for SPD matrices
Riemannian manifolds e Finds a discriminative
e Unsupervised method Euclidean subspace
e Flattens the manifold at the @ Relies on principal matrix
Karcher mean logarithm (tangent space)

From Manifold to Manifold: Geometry-Aware Dimensionality Reduction for SPD Matrices,
Mehrtash Harandi, Mathieu Salzmann, Richard Hartley, ECCV’14



SPD, Manifolds

Proposed dimensionality reduction technique

We learn a representation that
e is low-dimensional and discriminative
o <till benefits from useful properties of SPD matrices

e can be used in conjunction with existing manifold-based technique

From Manifold to Manifold: Geometry-Aware Dimensionality Reduction for SPD Matrices,
Mehrtash Harandi, Mathieu Salzmann, Richard Hartley, ECCV’14



SPD, Manifolds

Proposed dimensionality reduction technique

Geometry-Aware Dimensionality Reduction

We now describe our approach to learning an embedding of high-dimensional
SPD matrices to a more discriminative, low-dimensional SPD manifold. More
specifically, given a matrix X € &% ,, we seek to learn the parameters W €

nX1m , " . - . . . T X1 m 1~ - -1
R ,m < n, of a generic mapping f : Y, xR — ST, which we define
as

FIX.W)=WTXW. (4)
Clearly, if 8T, > X > 0 and W has full rank, &7 > WIXW - 0.
Given aset of SPD matrices X = {X,--- . X, }. where each matrix X; € 8} _ .

our goal 1s to find a transformation W such that the resulting low-dimensional
SPD manifold preserves some interesting structure of the original data. Here, we
encode this structure via an undirected graph defined by a real syvmmetric
affinity matrix A € RP*P. The element A;; of this matrix measures some notion
of affinity between matrices X; and X ;. and may be negative. We will discuss the
affinity matrix in more details in Section 4.2,

From Manifold to Manifold: Geometry-Aware Dimensionality Reduction for SPD Matrices,
Mehrtash Harandi, Mathieu Salzmann, Richard Hartley, ECCV’14



SPD, Manifolds

Proposed dimensionality reduction technique

To avoid degeneracies and ensure that the resulting embedding forms a valid
SPD manifold, i.c.. WIXW = 0, VX € &Y, we need W to have tull rank.
Here, we enforce this requirement by imposing orthonormality constraints on W,
1.€., wiw =1,,. Note that, with either the AIRM or the Stein divergence, this
entalls no loss of generality. Indeed, any full rank matrix W can be expressed as
MW with W an orthonormal matrix and M € GL(n). The affine invariance
property of the AIRM and of the Stein metric therefore gnarantees that

mj(W XQXJ) = mj(MWXBXj) = %:;(WXLXJ) .
Finally, learning can be expressed as the minimization problem

W* = argmin ZA”()Q (WTX W wTX,; W) st. WIW =1,
WERHXm . _

From Manifold to Manifold: Geometry-Aware Dimensionality Reduction for SPD Matrices,
Mehrtash Harandi, Mathieu Salzmann, Richard Hartley, ECCV’14
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Testing relative to:

NN-Stein: Stein metric-based Nearest Neighbor classifier.

NN-AIRM: AIRM-based Nearest Neighbor classifier.

NN-Stein-ML: Stein metric-based Nearest Neighbor classifier on the low-
dimensional SPD manifold obtained with our approach.

NN-AIRM-ML: AIRM-based Nearest Neighbor classifier on the
low-dimensional SPD manifold obtained with our approach.

RSR: Riemannian Sparse Representation [6].

RSR-ML: Riemannian Sparse Representation on the low-dimensional SPD
manifold obtained with our approach.

Material Categorization

Nl e ~

-

Fig. 2. Samples from the UIUC material dataset

Results:

Table 1. Mean recognition accuracies
with standard deviations for the UIUC
material dataset [12]

Method Accuracy
SD [12] 43.5% + N/A
CDL [22] 52.3% + 4.3
NN-Stein 35.8% £ 2.6
NN-Stein-ML 58.1% £ 2.8
NN-AIRM 35.6% £ 2.6
NN-AIRM-ML 58.3% + 2.3
RSR [6] 52.8% + 2.1
RSR-ML 66.6% + 3.1

From Manifold to Manifold: Geometry-Aware Dimensionality Reduction for SPD Matrices,
Mehrtash Harandi, Mathieu Salzmann, Richard Hartley, ECCV’14
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Testing relative to: Results:

NN-Stein: Stein metric-based Nearest Neighbor classifier. Table 2. Rec-t_)g'nition accuracies for
NN-AIRM: AIRM-based Nearest Neighbor classifier. the HDMO5-MOCAP dataset [14]
NN-Stein-ML: Stein metric-based Nearest Neighbor classifier on the low-
dimensional SPD manifold obtained with our approach.

NN-AIRM-ML: AIRM-based Nearest Neighbor -classifier on the Method Accuracy
low-dime;nsimmll SP[_) manifold ohtained with our approach. CDL [22} 79.8Y%,
RSR: Riemannian Sparse Representation [6].
RSR-ML: Riemannian Sparse Representation on the low-dimensional SPD NN-Stein 61.7%
manifold obtained with our approach. NN-Stein-ML 68.6%
NN-AIRM 62.8%
NN-AIRM-ML 67.6%
Action Recognition from Motion Capture Data RSR [6] 76.1%
! : RSR-ML 81.9%

Fig. 3. Kicking action from the HDMO05 motion capture sequences database [14]

From Manifold to Manifold: Geometry-Aware Dimensionality Reduction for SPD Matrices,
Mehrtash Harandi, Mathieu Salzmann, Richard Hartley, ECCV’14
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Results: Table 3. Recognition accuracies for the FERET face dataset [17]
Method bc bd be bf bg bh average acc.
SRC [23] 9.5% 37.5% T7.0% 88.0% 485% 11.0% 45.3% £ 3.3
GSRC [25] 35.5% 7T7.0% 93.5% 97.0% 79.0% 38.0% 70.0% £+ 2.7
CDL [22] 35.0% 87.5% 99.5% 100.0% 91.0% 34.5% T4.6% £ 3.1
NN-Stein 29.0% 75.5% 94.5% 98.0% 83.5% 34.5% 69.2% £+ 3.0

NN-Stein-ML 40.5% 88.5% 97.0% 99.0% 91.5% 44.5% 76.8% £ 2.7
NN-AIRM 28.5% T7T2.5% 93.0% 97.5% 83.0% 35.0% 68.3% + 3.0

NN-AIRM-ML 39.0% 84.0% 96.0% 99.0% 90.5% 45.5% 75.7% £ 2.6
RSR [6] 36.5% 79.5% 96.5% 97.5% 86.0% 41.5% T72.9% £ 2.7
RSR-ML 49.0% 90.5% 98.5% 100% 93.5% 50.5% 80.3% + 2.4

Face Recognition

) be

) ba (b) bj ) bk ) bd (f) be (g) bf (h) bg

A~~~

1) bh

Fig. 4. Samples from the FERET dataset [17]

From Manifold to Manifold: Geometry-Aware Dimensionality Reduction for SPD Matrices,
Mehrtash Harandi, Mathieu Salzmann, Richard Hartley, ECCV’14
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Benchmarks
http://mscoco.org/

Mlcrosoft Common Objects in COntext (MS COCO) dataset

berson sheep, dogu.:_‘

(a) Image classification (b) Object localization (c) Semantic segmentation (d) Th|s work

Fig. 1. While previous object recognition datasets have focused on (a) image classifi-
cation, (b) object bounding box localization or (c¢) semantic pixel-level segmentation,
we focus on (d) segmenting individual object instances. We introduce a large, richly-
annotated dataset comprised of images depicting complex everyday scenes of common
objects in their natural context

Objects are labeled using per-instance segmentations to aid in precise object localization.
Dataset contains photos of 91 objects types that would be easily recognizable by a 4 year
old. With a total of 2.5 million labeled instances in 328k images.
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Benchmarks

(a) Iconic object images (b) lconic scene images (c) Non-iconic images

Fig. 2. Example of (a) iconic object images, (b) iconic scene images, and (¢) non-iconic
images. In this work we focus on challenging non-iconic images.

Objects are labeled using per-instance segmentations to aid in precise object localization.
Dataset contains photos of 91 objects types that would be easily recognizable by a 4 year
old. With a total of 2.5 million labeled instances in 328k images.
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Annotation Pipeline

dog, bottle
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(a) Category labeling (b) Instance spotting (c) Instance segmentation

Fig. 3. Our image annotation pipeline is split into 3 primary worker tasks: (a) Labeling
the categories present in the image, (b) locating and marking all instances of the labeled
categories, and (c) segmenting each object instance.
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Benchmarks, Deformable Parts Model

Bounding-box Detection. We begin by examining the performance of the well studied
20 PASCAL object categories on our dataset. We evaluate two different models.
DPMv5-P: the latest implementation of DPM (release 5) trained on PASCAL VOC 2012.
DPMv5-C: the same implementation trained on COCO (5000 positive and 10000
negative images).

Felzenszwalb, P., Girshick, R., McAllester, D., Ramanan, D.: Object detection with
discriminatively trained part-based models. PAMI 32(9), 1627-1645 (2010)

Girshick, R., Felzenszwalb, P., McAllester, D.: Discriminatively trained deformable
part models, release 5. PAMI (2012)
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Benchmarks, Deformable Parts Model

Bounding-box Detection

Table 1. Top: Detection performance evaluated on PASCAL VOC 2012. DPMv5-P
is the performance reported by Girshick et al. in VOC release 5. DPMv5-C uses the
same implementation, but is trained with MS COCO. Bottom: Performance evaluated
on MS COCO for DPM models trained with PASCAL VOC 2012 (DPMv5-P) and MS
COCO (DPMv5-C). For DPMv5-C we used 5000 positive and 10000 negative training

plane bike bird boat bottle bus car cat chair cow table dog horse moto person plant sheep sofa train tv  Aveg.
DPMv3-P 45.6 49.0 11.0 11.6 27.2 50.5 43.1 23.6 17.2 23.2 10.7 20.5 425 445 41.3 8.7 29.0 18.7 40.0 345 29.6
DPMv3-C 437 50.111.8 24 214 60.1 35.6 16.0 11.4 24.8 53 954 44,5 410 358 63 283 133 388 36.2 26.8
DPMwv3-P 351 179 357 23 T 454 18.3 86 6.3 17 48 bH.8 353 254 1T7.5 41 14.5 9.6 31.7 27.09 169
DPMv3-C 36.9 20.2 5.¥ 3.5 6.6 50.3 16.1 12.8 45 19.0 9.6 40 38,2 209 159 6.7 138 10.4 39.237.919.1

If we compare the average performance of DPMv5-P on PASCAL VOC and
MS COCO, we find that average performance on MS COCO drops by nearly a
factor of 2, suggesting that MS COCO does include more difficult (non-iconic)
images of objects that are partially occluded, amid clutter, etc. We notice a
similar drop in performance for the model trained on MS COCO (DPMv5-C).
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Detection Evaluated by Segmentation
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Fig. 9. A predicted segmentation might not recover object detail even though detection
and groundtruth bounding boxes overlap well (left). Sampling from the person category
illustrates that on a per-instance basis, predicting segmentation from top-down pro-
jection of DPM part masks is difficult even for correct detections (center). Averaging
over instances for each of the PASCAL VOC categories on our dataset demonstrates
that it presents a challenge for object segmentation algorithms (right).
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Benchmarks, Deformable Parts Model

Detection Evaluated by Segmentation

Person Bike

Fig. 7. We visualize our mixture-specific shape masks. We paste thresholded shape
masks on each candidate detection to generate candidate segments.

Fig. 8. Evaluating instance detections with segmentation masks versus bounding
boxes. Bounding boxes are a particularly crude approximation for articulated objects;
in this case, the majority of the pixels in the (blue) tight-fitting bounding-box do not
lie on the object. Our (green) instance-level segmentation masks allows for a more
accurate measure of object detection and localization.
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3aknwuyeHue |

3a4aun KOMNbIOTEPHOrO 3pPeHUA, J0BeAEeHHbIe A0 CTaaUN TEXHONOrNMYEeCcKUnx
pelieHun:

SLAM — TexHon0orma ogHOBPEMEHHOW PEKOHCTPYKLUMKM 3D CUEHbI N OLLEHKM
No/IoXKeHuA/NapameTpoB ABUKEHUSA Kamepbl

MpnBA3Ka 06/1aKoB ToYEK K 3a4aHHbIM 3D moaenam

Pacno3HaBaHMe XapaKTepPHbIX 3/IEMEHTOB rOPOACKON cpeabl ANA NPUBA3KM
BMAEOAAHHbIX K KapTe

BolaeneHme n npocnexknBaHme ABMXKYLMXCA 0OBEKTOB

Mcnonb3oBaHMe NpaBua aHaNM3a AMHAMUYECKOWN CLUEHbI ANA reHepaumn
cobbITUN U coobLLEHUN B cUCTEMAX BUAEOHabAoaeHnA

CncTembl aBTOMATMUYECKOro aHanM3a CneLunanm3npoBaHHbIX BUAEOAAHHbIX
(Hanpumep, HEKOTOPbIX TUMOB CNOPTUBHbIX UTP)

BolaeneHme n3aMeHeHUM B cueHe

Ob6HapyxeHune ntogen (newexonos)

Ob6HapyKeHne 1 pacno3HaBaHUe nnL,

[MOMCK NO CXOACTBY B KONJIEKUMAX N306parKeHUMn

Obuwine ycnexu B pacno3HaBaHUM BU3yasibHbIX 06pa3oB (Deep Learning)



3aknto4yeHue ll

3a4aun KOMNbIOTEPHOro 3peHnA, Haxogalimeca B ctaaum GyHAaAMEHTaAbHOro
uccnepoBaHUA U AaneKkue OT roTOBbIX TEXHOJIOrMYECKUX peLleHuU:

OueHKa XxapaKTepa noseaeHus rpynn Aoaen Uamn Tonnbl

BbiaeneHue n npocaexnBaHme oTae/IbHbIX 10AeN B Tonne
Pe-naeHtndmnKkauma ntogem npu CbeMKe B pa3/IMyHbIX YCNOBUAX
Pacno3HaBaHWe KL, B CIOXKHbIX YCOBUAX CbEMKU, MPU HU3KOM
paspeLlleHnmn, Npu HaandYnm MUMUKN

Pacno3HaBaHue AencTBUM Ntogen, ocobeHHO — X B3auMoaenCcTBuA
PA3/IMYHbIX TUNOB, onepaLun ¢ npeaMmeTaMmm , B3aMMoAencTBumA C
3/leMeHTaMM OKpYrKatoLLen cpeapbl U T.n.

PeKOHCTPYKLUMA NPUPOAHbIX NPOLECCOoB B cLUeHax HabatoaeHua (noxKapol,
HaBOAHEHWA, Pa3pyLLUeHuns, T.n.)

CeMaHTMYeCKNIM NOUCK MO CXOACTBY B KONNTEKLUMAX BUALOAAHHbIX
ABTOMaTU4YECKOE aHHOTUPOBAHME BUAEOAAHHbIX C MUCMO/Ib30BAaHUEM
TEKCTOBbIX TErOB

MocTpoeHMe U NCNonb3oBaHME NPOCTPAHCTBEHHO-BPEMEHHDbIX JIOTUK U
OHTOIOTUM ANA aHA/IN3a CIOXKHbIX AMHAMUYECKUX CLEH



