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Problem statement, motivating examples
Hyperparameters of algorithm

Hyperparameters are parameters defined outside training
procedure.

Most ML algorithms have hyperparameters:

o Ridge regression and lasso — regularization term
SVM — regularization and kernel parameters
Neural network — number of layers and neurons

XGBoost — number of trees, max depth, learning rate, ...
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Problem statement, motivating examples
Example: hyperparameters of XGBoost

Hyperparameters of one of the most popular tool for gradient
boosting XGBoost:

@ Number of trees — integer

o Max depth — integer

@ Objective function — categorical

@ Learning rate — float

@ Minimum loss reduction — float

@ Minimum child weight — float

@ Subsample ratio of instances — float

@ Subsample ratio of columns — float
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Problem statement, motivating examples

Motivation for hyperparameters tuning

Why automating hyperparameters tuning?
@ Performance gain

@ No universal set of hyperparameters, optimal hyperparameters
depend on data set

@ Optimization algorithm can do better than human

@ Enable non-experts to use ML algorithms

5/45 Maxim Panov Smart selection



Problem statement, motivating examples
Formal problem statement

Hyperparameter tuning problem involves:
@ X\ — vector of hyperparameters A = (A1,...,\p)
o A) — learning algorithm with hyperparameters A
® Dyyqin — training data set Dypgin = (X,Y) = {(xi,yi)}fil
® L(Ax, Dirain, Diest) — loss function achieved by Ay when
trained on data set Dyqipn and validated on Dyegy

The task is to find

A" = arg ;nin L (Ax, Dirain» Diest)
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Problem statement, motivating examples
Loss function

Example of loss function

Ntest
1 .
,C(A)‘, Dtrainy Dtest) = RMSE = Nt . § (yz - %)2,
est ]

where Yi € Diest, Niest — size of Dyegt,
y; is a prediction of a model learned on Dyq;n using algorithm Ajy,.

Cross-validation is used if Dy is not known.
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Problem statement, motivating examples
Problem key properties

Unknown, probably non-convex loss function £
Derivatives are not available

Evaluation time of £ depends on A
Different types of hyperparameters:

o numerical (both integer and real-valued)
e categorical

°
°
@ Evaluation of loss function is expensive
°
°

@ Tree-structured configuration space
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Problem statement, motivating examples
Example: artificial neural network

Hyperparameters:

@ Number of layers
Number of neurons in each layer
Activation function for each layer

Learning rate

— complex tree-structured configuration space

— mixed types of hyperparameters
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Hints based model choice

© Hints based model choice
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Hints based model choice
Hints

Sometimes user knows something about the data
e Data is linear/quadratic
@ Data is discontinuous

e Data has special structure (e.g. factorial design of
experiments)

Sometimes user has requirements for model
@ to be smooth
@ to be interpolating

@ to allow to estimate uncertainty of prediction

— Configuration space may be reduced
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Hints based model choice

Example

T tensorGPreg
*__training set

25 T oP regression 28
*__training set
2
i

ps 1

(a) Universal approximation (b) Special technique for
technique factorial samples

Universal techniques don't take into account sample structure
— poor quality
— high computational complexity
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Hints based model choice
Existing approaches

o Grid Search

o Simple to implement and parallelize

o Requires large budget in high dimensional space
@ Random Search

e The maximum of 60 random observations lies within the top
5% of the true maximum, with 95% probability.
— Random search finds better models than grid search if budget
is small.

o Bayesian optimization
e “Smart” selection of new candidate point

o Based on modeling dependence of loss function £ on A
e Sequential, hard to parallelize
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SBO for hyperparameter selection

© SBO for hyperparameter selection
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SBO for hyperparameter selection
Surrogate model Based Optimization

SBO uses surrogate model M that captures dependency of loss
function £ on A.

Generic SBO scheme

1. Generate initial sample of hyperparameters and evaluate
objective function

Build model
Select new candidates using model-based criterion

Evaluate objective function

AR A

Augment current sample, goto step 2
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SBO for hyperparameter selection

SBO illustration
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SBO for hyperparameter selection

SBO illustration
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SBO for hyperparameter selection

SBO illustration
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SBO for hyperparameter selection

SBO illustration
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SBO for hyperparameter selection
Surrogate model Based Optimization

So, we need
@ Surrogate modeling function

@ Procedure to choose candidate points
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SBO for hyperparameter selection
Surrogate models

Requirements for surrogate models:

uncertainty estimate o(\) at any point A.

Popular choices:
@ Gaussian Processes
@ Random Forest
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SBO for hyperparameter selection
Gaussian Process Regression

° g(z) = f(z) +&(x),
where f(x) — Gaussian process (GP), ¢ — Gaussian white
noise.

@ GP is fully defined by its mean and covariance function.
@ The covariance function of g(x):

Kg(fL’, xl) = K(x7 I/) + U?Loiseé(x7 .’E,),

K(x,2") — covariance function of f(z),
d(z,2") — Kronecker delta.
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SBO for hyperparameter selection
Gaussian Process Regression

@ Prediction of g(z) at point

fla) =K'K;ly, ﬁ
where k = (K¢(21,2),..., K¢(zn, 2)), ,
Ky = || K (@i, )17, A
y = (g(x1), .., g(an), {(zi gz} is A
a given data set.

@ Posterior variance B I I R S R

o*(z) = Ky(v, ) — kTKglk.
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SBO for hyperparameter selection

Covariance Function

@ Squared exponential function

Ke(z,2') = o%exp | — Z 0 (xy, — 2,)?

21/45 Maxim Panov Smart selection



SBO for hyperparameter selection

Some observations of SBO:
© Evaluated candidates cluster in promising regions
@ Hierarchy of cluster sizes could be observed
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Figure : Initial sample
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SBO for hyperparameter selection

Some observations of SBO:
© Evaluated candidates cluster in promising regions
@ Hierarchy of cluster sizes could be observed
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Figure : After few iterations
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SBO for hyperparameter selection

Some observations of SBO:
© Evaluated candidates cluster in promising regions
@ Hierarchy of cluster sizes could be observed
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Figure : Converged solution
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SBO for hyperparameter selection

Some observations of SBO:
@ Evaluated candidates cluster in promising regions
@ Hierarchy of cluster sizes could be observed

os * ;,: * 1 @ Instead of single evaluation of

4 . candidate we perform sampling in
T | candidate vicinity.

. NGl | e Vicinity of p-th candidate we will
oal .o " denote by €.
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SBO for hyperparameter selection
Covariance Function

@ Multi-resolution covariance function

K(z,y) = Ko(z,9)+Y_au Y K (z,a) KW KW (2], y),
M i,

where K is an (1,,-specific covariance vector/matrix, Q, is
a vicinity of candidate point.

Advantages of such covariance function:

o Non-stationary
o Robust w.r.t. sample augmentation
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SBO for hyperparameter selection

[llustration of multi-resolution GP
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SBO for hyperparameter selection

[llustration of multi-resolution

GP
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SBO for hyperparameter selection

[llustration of multi-resolution GP
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SBO for hyperparameter selection

[llustration of multi-resolution GP
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SBO for hyperparameter selection

[llustration of multi-resolution GP
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SBO for hyperparameter selection
Choosing candidate point

25/45

Acquisition function a(A, R) is used to choose new candidate
point
Akt1 = argmax a(, Ry),
b

where ), = {()\zv Ci); G = E(A)\i, Dirain, Dtest)}i'czl-

High values of a(A, R) corresponds to potentially low values of loss

@ because of low prediction
@ because of great uncertainty in prediction
@ both
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SBO for hyperparameter selection
Acquisition function

Let ¢ = min ¢ — minimal value of objective found so far,
1(A|R) — model prediction,
o(A|R) — uncertainty of prediction.

1. Probability of Improvement
apr(A, R) =P(c < ) = 8(v(N)),

¢ — p(A[R)
a(AlR)

Pros: takes into account both prediction and uncertainty.

Y(A) =

Cons: doesn't take into account value of improvement.
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SBO for hyperparameter selection
Acquisition function

Let ¢ = min ¢ — minimal value of objective found so far,
1(A|R) — model prediction,
o(A|R) — uncertainty of prediction.

2. GP Upper Confidence Bound
aUCB()‘v R) = [L()\|R) - /BU(A|R)a

where 5 — exploitation-exploration ratio.
Pros: takes into account both prediction and uncertainty.

Cons: has hyperparameter itself.
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SBO for hyperparameter selection
Acquisition function

Let ¢ = min ¢ — minimal value of objective found so far,
1(A|R) — model prediction,
o(A|R) — uncertainty of prediction.

3. Expected Improvement

apr(A R) =E((¢' - o)1) =
= o(AIR) [Y(N)@(¥(A)) + N (7(A); 0,1)]

Pros: takes into account prediction, its uncertainty and value of
improvement.
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SBO for hyperparameter selection
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Standard approach for SBO:

@ Use Gaussian Processes regression to build model for ¢(\)

@ Use Expected Improvement

Gaussian Processes model p(c|A) which allows to compute
Expected Improvement.

There is an alternative approach!
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SBO for hyperparameter selection

Tree-structured Parzen estimator (TPE)

28/45

Previous approaches model p(c|A) explicitly. TPE separately
estimates p(c) and p(A|c)

i), o< e
p(Ale) = {g()‘)7 o> o

where ¢* is a y-quantile of the losses obtained so far (y = 0.15).
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SBO for hyperparameter selection

Tree-structured Parzen estimator (TPE)

Actually, in such setting we don’t need p(c), because

-1
apr(A R) =E((d —¢)1) o (’y + %(1 - ’)’))

A
., TPE minimizes 2.
I(X)
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SBO for hyperparameter selection

Modeling () and g()

For each hyperparameter \; € A a 1-D Parzen estimator is
constructed.

o Continuous hyperparameters: Gaussian densities are placed
at each hyperparameter value \;.
Standard deviation — the largest distance to neighbors of ;.

o Discrete hyperparameters: probability are proportional to
number of occurrences.
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pSeven Core framework

@ pSeven Core framework
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pSeven Core framework
pSeven Core framework

pSeven Core is a Python library developed by DATADVANCE.

It contains generic tools for

o Approximation

Design of Experiment
Dimension Reduction

Sensitivity Analysis

Optimization

DATADVANCE
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pSeven Core framework
Requirements to hyperparameter tuning algorithm

Current state: some default values of hyperparameters, don’t give
desired performance for some problems.

Requirements according to problems arising in DATADVANCE
practice

@ Automatic approach to tune hyperparemters
@ Support human-friendly hints
o Control over training time
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pSeven Core framework

Options structure

Technique == GBRT Technique == RSM

N trees

Learning rate
MinChildWeight
MinLossReduction
Subsample
Colsample

RSMType
FeatureSelection

FeatureSelection == ElasticNet

L1_ratio

@ Most of the branches have depth = 1
o Maximum depth = 2
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pSeven Core framework
Hyperparameters tuning in pSeven Core

1. Reduce configuration space according to hints, sample size
and input dimension

Examples:

@ Hints: DataFeatures=Quadratic
— RSM with RSMType € [Quadratic, PureQuadratic,
Interactions]
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pSeven Core framework
Hyperparameters tuning in pSeven Core

1. Reduce configuration space according to hints, sample size
and input dimension

Examples:

@ Sample size = 10 000
— don't use GP
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pSeven Core framework
Hyperparameters tuning in pSeven Core

1. Reduce configuration space according to hints, sample size
and input dimension

Examples:

@ Input dimension > sample size
— use RSM with ElasticNet or GBRT.
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pSeven Core framework
Hyperparameters tuning in pSeven Core

2. For each technique find optimal hyperparameters via

e SBO for numeric hyperparmeters
o brute force search for categorical hyperparameters

Techniques are either
@ Cheap (e.g. RSM, GBRT)

e Medium expensive with few categorical levels (e.g. GP has
only 6 combinations of categorical parameters)

@ Expensive and have no hyperparameters to tune

@ Expensive with tunable hyperparameters, but there is only 1
such technique
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pSeven Core framework

3. Choose the best performing technique and its
hyperparameters.
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Experiments

© Experiments
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Experiments

Experimental Setup for Regression

39/45

@ A set of toy functions (about 30) is used
@ Sample sizes: 80, 320

e Comparing algorithms:

o Hyperopt (uses TPE)
o SMAC (uses Random Forest)
o SmartSelection (uses GP)

e Quality criterion:

’L y’t @1)2
RRMS = \/N =

\/N zlyz_y)

where ¢ is mean over training set
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Experiments
Dolan-Moré curves

T problems, A algorithms

@ e, — approximation error (or training time) of a-th algorithm
on t-th problem

@ ¢; = ming ety

pa(’]’) _ #{t : 61;:< Tét}

@ The higher the curve is the better works corresponding
algorithm

@ p,(1) — fraction of problems for which a-th algorithm worked
the best
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Experiments

— smart_selection — smart_selection
== hyperopt == hyperopt
smac smac
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(a) Cross-validation errors (b) Test errors
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Experiments
Experimental Setup for Classification

@ Otto Group Product Classification Challenge from kaggle

o XGBoost is used for classification
@ Comparing algorithms:

o Hyperopt (uses TPE)
o SMAC (uses Random Forest)
o SmartSelection (uses GP)

@ Quality criterion:

1 N M
logloss = N ; Z i 10g(pij),

where IV is the number of products in the test set, M is the
number of class labels, y;; is 1 if observation ¢ is in class j
and 0 otherwise, and p;; is the predicted probability that
observation ¢ belongs to class j.
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Experiments

History of evaluations
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Table : Best errors
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Experiments

History of evaluations
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Experiments

Thank you for your attention!

45/45 Maxim Panov Smart selection



	Problem statement, motivating examples
	Hints based model choice
	SBO for hyperparameter selection
	pSeven Core framework
	Experiments

