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Problem statement, motivating examples

Hyperparameters of algorithm

Hyperparameters are parameters defined outside training
procedure.

Most ML algorithms have hyperparameters:

Ridge regression and lasso — regularization term

SVM — regularization and kernel parameters

Neural network — number of layers and neurons

XGBoost — number of trees, max depth, learning rate, ...

...
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Problem statement, motivating examples

Example: hyperparameters of XGBoost

Hyperparameters of one of the most popular tool for gradient
boosting XGBoost:

Number of trees — integer

Max depth — integer

Objective function — categorical

Learning rate — float

Minimum loss reduction — float

Minimum child weight — float

Subsample ratio of instances — float

Subsample ratio of columns — float
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Problem statement, motivating examples

Motivation for hyperparameters tuning

Why automating hyperparameters tuning?

Performance gain

No universal set of hyperparameters, optimal hyperparameters
depend on data set

Optimization algorithm can do better than human

Enable non-experts to use ML algorithms
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Problem statement, motivating examples

Formal problem statement

Hyperparameter tuning problem involves:

λ — vector of hyperparameters λ = (λ1, . . . , λn)

Aλ — learning algorithm with hyperparameters λ

Dtrain — training data set Dtrain = (X,Y ) = {(xi, yi)}Ni=1

L(Aλ,Dtrain,Dtest) — loss function achieved by Aλ when
trained on data set Dtrain and validated on Dtest

The task is to find

λ∗ = arg min
λ

L (Aλ,Dtrain,Dtest)
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Problem statement, motivating examples

Loss function

Example of loss function

L(Aλ,Dtrain,Dtest) = RMSE =

√√√√ 1

Ntest

Ntest∑
i=1

(yi − ŷi)2,

where yi ∈ Dtest, Ntest — size of Dtest,
ŷi is a prediction of a model learned on Dtrain using algorithm Aλ.

Cross-validation is used if Dtest is not known.
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Problem statement, motivating examples

Problem key properties

Unknown, probably non-convex loss function L
Derivatives are not available

Evaluation of loss function is expensive

Evaluation time of L depends on λ

Different types of hyperparameters:

numerical (both integer and real-valued)
categorical

Tree-structured configuration space
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Problem statement, motivating examples

Example: artificial neural network

Hyperparameters:

Number of layers

Number of neurons in each layer

Activation function for each layer

Learning rate

...

→ complex tree-structured configuration space

→ mixed types of hyperparameters
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Hints based model choice
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Hints based model choice

Hints

Sometimes user knows something about the data

Data is linear/quadratic

Data is discontinuous

Data has special structure (e.g. factorial design of
experiments)

Sometimes user has requirements for model

to be smooth

to be interpolating

to allow to estimate uncertainty of prediction

→ Configuration space may be reduced
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Hints based model choice

Example
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(a) Universal approximation
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(b) Special technique for
factorial samples

Universal techniques don’t take into account sample structure

→ poor quality

→ high computational complexity
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Hints based model choice

Existing approaches

Grid Search
Simple to implement and parallelize
Requires large budget in high dimensional space

Random Search
The maximum of 60 random observations lies within the top
5% of the true maximum, with 95% probability.

→ Random search finds better models than grid search if budget
is small.

Bayesian optimization
“Smart” selection of new candidate point
Based on modeling dependence of loss function L on λ
Sequential, hard to parallelize
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SBO for hyperparameter selection
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SBO for hyperparameter selection

Surrogate model Based Optimization

SBO uses surrogate model M that captures dependency of loss
function L on λ.

Generic SBO scheme

1. Generate initial sample of hyperparameters and evaluate
objective function

2. Build model

3. Select new candidates using model-based criterion

4. Evaluate objective function

5. Augment current sample, goto step 2
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SBO for hyperparameter selection

SBO illustration
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SBO for hyperparameter selection

SBO illustration
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SBO for hyperparameter selection

SBO illustration
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SBO for hyperparameter selection

SBO illustration
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SBO for hyperparameter selection

Surrogate model Based Optimization

So, we need

1 Surrogate modeling function

2 Procedure to choose candidate points
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SBO for hyperparameter selection

Surrogate models

Requirements for surrogate models:

uncertainty estimate σ(λ) at any point λ.

Popular choices:

1 Gaussian Processes

2 Random Forest
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SBO for hyperparameter selection

Gaussian Process Regression

g(x) = f(x) + ε(x),
where f(x) — Gaussian process (GP), ε — Gaussian white
noise.

GP is fully defined by its mean and covariance function.

The covariance function of g(x):

Kg(x, x
′) = K(x, x′) + σ2noiseδ(x, x

′),

K(x, x′) — covariance function of f(x),
δ(x, x′) — Kronecker delta.
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SBO for hyperparameter selection

Gaussian Process Regression

Prediction of g(x) at point x

f̂(x) = kTK−1g y,

where k = (Kf (x1, x), . . . ,Kf (xn, x)),
Kg = ||Kg(xi, xj)||Ni,j ,
y = (g(x1), . . . , g(xN ), {(xi, g(xi))}Ni=1 is
a given data set.

Posterior variance

σ2(x) = Kf (x, x)− kTK−1g k.
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SBO for hyperparameter selection

Covariance Function

Squared exponential function

Kse(x, x
′) = σ2 exp

(
−

d∑
i=1

θi(xk − x′k)2
)
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SBO for hyperparameter selection

Some observations of SBO:
1 Evaluated candidates cluster in promising regions
2 Hierarchy of cluster sizes could be observed

Figure : Initial sample
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SBO for hyperparameter selection

Some observations of SBO:
1 Evaluated candidates cluster in promising regions
2 Hierarchy of cluster sizes could be observed

Figure : After few iterations
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SBO for hyperparameter selection

Some observations of SBO:
1 Evaluated candidates cluster in promising regions
2 Hierarchy of cluster sizes could be observed

Figure : Converged solution
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SBO for hyperparameter selection

Some observations of SBO:

1 Evaluated candidates cluster in promising regions

2 Hierarchy of cluster sizes could be observed

Instead of single evaluation of
candidate we perform sampling in
candidate vicinity.

Vicinity of µ-th candidate we will
denote by Ωµ.
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SBO for hyperparameter selection

Covariance Function

Multi-resolution covariance function

K(x, y) = K0(x, y)+
∑
µ

αµ
∑
i,j

K(µ)(x, x(i)µ )[K(µ)]−1K(µ)(xjµ, y),

where K(µ) is an Ωµ-specific covariance vector/matrix, Ωµ is
a vicinity of candidate point.

Advantages of such covariance function:

Non-stationary
Robust w.r.t. sample augmentation
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SBO for hyperparameter selection

Illustration of multi-resolution GP
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SBO for hyperparameter selection

Illustration of multi-resolution GP
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SBO for hyperparameter selection

Illustration of multi-resolution GP
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SBO for hyperparameter selection

Illustration of multi-resolution GP
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SBO for hyperparameter selection

Illustration of multi-resolution GP
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SBO for hyperparameter selection

Choosing candidate point

Acquisition function a(λ, R) is used to choose new candidate
point

λk+1 = arg max
λ

a(λ, Rk),

where Rk = {(λi, ci), ci = L(Aλi
,Dtrain,Dtest)}ki=1.

High values of a(λ, R) corresponds to potentially low values of loss

because of low prediction

because of great uncertainty in prediction

both
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SBO for hyperparameter selection

Acquisition function

Let c′ = min c — minimal value of objective found so far,
µ(λ|R) — model prediction,
σ(λ|R) — uncertainty of prediction.

1. Probability of Improvement

aPI(λ, R) = P(c < c′) = Φ(γ(λ)),

γ(λ) =
c′ − µ(λ|R)

σ(λ|R)
.

Pros: takes into account both prediction and uncertainty.

Cons: doesn’t take into account value of improvement.
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SBO for hyperparameter selection

Acquisition function

Let c′ = min c — minimal value of objective found so far,
µ(λ|R) — model prediction,
σ(λ|R) — uncertainty of prediction.

2. GP Upper Confidence Bound

aUCB(λ, R) = µ(λ|R)− βσ(λ|R),

where β — exploitation-exploration ratio.

Pros: takes into account both prediction and uncertainty.

Cons: has hyperparameter itself.
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SBO for hyperparameter selection

Acquisition function

Let c′ = min c — minimal value of objective found so far,
µ(λ|R) — model prediction,
σ(λ|R) — uncertainty of prediction.

3. Expected Improvement

aEI(λ, R) = E((c′ − c)+) =

= σ(λ|R) [γ(λ)Φ(γ(λ)) +N (γ(λ); 0, 1)]

Pros: takes into account prediction, its uncertainty and value of
improvement.
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SBO for hyperparameter selection

Standard approach for SBO:

Use Gaussian Processes regression to build model for c(λ)

Use Expected Improvement

Gaussian Processes model p(c|λ) which allows to compute
Expected Improvement.

There is an alternative approach!
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SBO for hyperparameter selection

Tree-structured Parzen estimator (TPE)

Previous approaches model p(c|λ) explicitly. TPE separately
estimates p(c) and p(λ|c)

p(λ|c) =

{
l(λ), if c < c∗

g(λ), if c ≥ c∗
,

where c∗ is a γ-quantile of the losses obtained so far (γ = 0.15).
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SBO for hyperparameter selection

Tree-structured Parzen estimator (TPE)

Actually, in such setting we don’t need p(c), because

aEI(λ, R) = E((c′ − c)+) ∝
(
γ +

g(λ)

l(λ)
(1− γ)

)−1

→ TPE minimizes
g(λ)

l(λ)
.
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SBO for hyperparameter selection

Modeling l(λ) and g(λ)

For each hyperparameter λi ∈ λ a 1-D Parzen estimator is
constructed.

Continuous hyperparameters: Gaussian densities are placed
at each hyperparameter value λi.
Standard deviation — the largest distance to neighbors of λi.

Discrete hyperparameters: probability are proportional to
number of occurrences.
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pSeven Core framework
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pSeven Core framework

pSeven Core framework

pSeven Core is a Python library developed by DATADVANCE.

It contains generic tools for

Approximation

Design of Experiment

Dimension Reduction

Sensitivity Analysis

Optimization
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pSeven Core framework

Requirements to hyperparameter tuning algorithm

Current state: some default values of hyperparameters, don’t give
desired performance for some problems.

Requirements according to problems arising in DATADVANCE
practice

Automatic approach to tune hyperparemters

Support human-friendly hints

Control over training time
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pSeven Core framework

Options structure

Most of the branches have depth = 1

Maximum depth = 2
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pSeven Core framework

Hyperparameters tuning in pSeven Core

1. Reduce configuration space according to hints, sample size
and input dimension

Examples:

Hints: DataFeatures=Quadratic
→ RSM with RSMType ∈ [Quadratic, PureQuadratic,
Interactions]
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pSeven Core framework

Hyperparameters tuning in pSeven Core

1. Reduce configuration space according to hints, sample size
and input dimension

Examples:

Sample size = 10 000
→ don’t use GP
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pSeven Core framework

Hyperparameters tuning in pSeven Core

1. Reduce configuration space according to hints, sample size
and input dimension

Examples:

Input dimension > sample size
→ use RSM with ElasticNet or GBRT.
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pSeven Core framework

Hyperparameters tuning in pSeven Core

2. For each technique find optimal hyperparameters via

SBO for numeric hyperparmeters
brute force search for categorical hyperparameters

Techniques are either

Cheap (e.g. RSM, GBRT)

Medium expensive with few categorical levels (e.g. GP has
only 6 combinations of categorical parameters)

Expensive and have no hyperparameters to tune

Expensive with tunable hyperparameters, but there is only 1
such technique
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pSeven Core framework

3. Choose the best performing technique and its
hyperparameters.
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Experiments
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Experiments

Experimental Setup for Regression

A set of toy functions (about 30) is used

Sample sizes: 80, 320

Comparing algorithms:

Hyperopt (uses TPE)
SMAC (uses Random Forest)
SmartSelection (uses GP)

Quality criterion:

RRMS =

√
1
N

∑N
i=1(yi − ŷi)2√

1
N

∑N
i=1(yi − ȳ)2

,

where ȳ is mean over training set
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Experiments

Dolan-Moré curves

T problems, A algorithms

eta — approximation error (or training time) of a-th algorithm
on t-th problem

ẽt = mina eta

ρa(τ) =
#{t : eta < τẽt}

T

The higher the curve is the better works corresponding
algorithm

ρa(1) — fraction of problems for which a-th algorithm worked
the best
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Experiments
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(b) Test errors
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Experiments

Experimental Setup for Classification

Otto Group Product Classification Challenge from kaggle

XGBoost is used for classification

Comparing algorithms:

Hyperopt (uses TPE)
SMAC (uses Random Forest)
SmartSelection (uses GP)

Quality criterion:

logloss = − 1

N

N∑
i=1

M∑
j=1

yij log(pij),

where N is the number of products in the test set, M is the
number of class labels, yij is 1 if observation i is in class j
and 0 otherwise, and pij is the predicted probability that
observation i belongs to class j.
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Experiments

History of evaluations
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Smart Selection 0.4757
SMAC 0.4710

Hyperopt 0.4624

Table : Best errors
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Experiments
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0 50 100 150 200 250 300 350 400 450

N iterations

0.5

1.0

1.5

2.0
lo

g
lo

ss hyperopt
smart_selection

smac

44/45 Maxim Panov Smart selection



Experiments

Thank you for your attention!
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